The book covers the challenging process from lead finding to drug candidates. Focus is upon the potential usefulness of methods for design of lead discovery libraries, lead optimization, computational chemistry methods for the calculation of energetics of protein-ligand interaction, and computer simulations of biological activities. Important topics include new developments in chemometrics and rational molecular design as well as different aspects of structure representation, knowledge-based approaches to structure identification and information handling.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Section I: Overview. . Section II: New Developments and Applications of Multivariate QSAR. Section III: The Future of 3D-QSAR. Section IV: Prediction of Ligand-Protein Binding. Section VI:Affinity and Efficacy Models of G-Protein Coupled Receptors. Section VII: New Methods in Drug DiscoverySection VIII: Modeling of Membrane Penetration. Section IX: Poster Presentations. Poster Session I: New Developments and Applications of Multivariate QSAR. Poster Session II: The Future of 3D-QSAR. Poster Session III: Prediction of Ligand-Protein Binding. Poster Session IV: Computational Aspects of Molecular Diversity and Combinatorial Libraries. Poster Session V: Affinity and Efficacy Models of G-Protein Coupled Receptors. Poster Session VI: New Methods in Drug Discovery. Poster Session VII: Modelling of Membrane Penetration. Author Index. Subject Index.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 28,90 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Much of chemistry, molecular biology, and drug design, are centered around the relationships between chemical structure and measured properties of compounds and polymers, such as viscosity, acidity, solubility, toxicity, enzyme binding, and membrane penetra. Codice articolo 5903011
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Much of chemistry, molecular biology, and drug design, are centered around the relationships between chemical structure and measured properties of compounds and polymers, such as viscosity, acidity, solubility, toxicity, enzyme binding, and membrane penetration. For any set of compounds, these relationships are by necessity complicated, particularly when the properties are of biological nature. To investigate and utilize such complicated relationships, henceforth abbreviated SAR for structure-activity relationships, and QSAR for quantitative SAR, we need a description of the variation in chemical structure of relevant compounds and biological targets, good measures of the biological properties, and, of course, an ability to synthesize compounds of interest. In addition, we need reasonable ways to construct and express the relationships, i. e. , mathematical or other models, as well as ways to select the compounds to be investigated so that the resulting QSAR indeed is informative and useful for the stated purposes. In the present context, these purposes typically are the conceptual understanding of the SAR, and the ability to propose new compounds with improved property profiles. Here we discuss the two latter parts of the SARlQSAR problem, i. e. , reasonable ways to model the relationships, and how to select compounds to make the models as 'good' as possible. The second is often called the problem of statistical experimental design, which in the present context we call statistical molecular design, SMD. 1. 520 pp. Englisch. Codice articolo 9780306462177
Quantità: 2 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -Much of chemistry, molecular biology, and drug design, are centered around the relationships between chemical structure and measured properties of compounds and polymers, such as viscosity, acidity, solubility, toxicity, enzyme binding, and membrane penetration. For any set of compounds, these relationships are by necessity complicated, particularly when the properties are of biological nature. To investigate and utilize such complicated relationships, henceforth abbreviated SAR for structure-activity relationships, and QSAR for quantitative SAR, we need a description of the variation in chemical structure of relevant compounds and biological targets, good measures of the biological properties, and, of course, an ability to synthesize compounds of interest. In addition, we need reasonable ways to construct and express the relationships, i. e. , mathematical or other models, as well as ways to select the compounds to be investigated so that the resulting QSAR indeed is informative and useful for the stated purposes. In the present context, these purposes typically are the conceptual understanding of the SAR, and the ability to propose new compounds with improved property profiles. Here we discuss the two latter parts of the SARlQSAR problem, i. e. , reasonable ways to model the relationships, and how to select compounds to make the models as 'good' as possible. The second is often called the problem of statistical experimental design, which in the present context we call statistical molecular design, SMD. 1.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 520 pp. Englisch. Codice articolo 9780306462177
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Much of chemistry, molecular biology, and drug design, are centered around the relationships between chemical structure and measured properties of compounds and polymers, such as viscosity, acidity, solubility, toxicity, enzyme binding, and membrane penetration. For any set of compounds, these relationships are by necessity complicated, particularly when the properties are of biological nature. To investigate and utilize such complicated relationships, henceforth abbreviated SAR for structure-activity relationships, and QSAR for quantitative SAR, we need a description of the variation in chemical structure of relevant compounds and biological targets, good measures of the biological properties, and, of course, an ability to synthesize compounds of interest. In addition, we need reasonable ways to construct and express the relationships, i. e. , mathematical or other models, as well as ways to select the compounds to be investigated so that the resulting QSAR indeed is informative and useful for the stated purposes. In the present context, these purposes typically are the conceptual understanding of the SAR, and the ability to propose new compounds with improved property profiles. Here we discuss the two latter parts of the SARlQSAR problem, i. e. , reasonable ways to model the relationships, and how to select compounds to make the models as 'good' as possible. The second is often called the problem of statistical experimental design, which in the present context we call statistical molecular design, SMD. 1. Codice articolo 9780306462177
Quantità: 1 disponibili
Da: Mispah books, Redhill, SURRE, Regno Unito
Paperback. Condizione: Like New. Like New. book. Codice articolo ERICA77303064621766
Quantità: 1 disponibili