Brain Tumor MRI Image Segmentation Using Deep Learning Techniques offers a description of deep learning approaches used for the segmentation of brain tumors. The book demonstrates core concepts of deep learning algorithms by using diagrams, data tables and examples to illustrate brain tumor segmentation. After introducing basic concepts of deep learning-based brain tumor segmentation, sections cover techniques for modeling, segmentation and properties. A focus is placed on the application of different types of convolutional neural networks, like single path, multi path, fully convolutional network, cascade convolutional neural networks, Long Short-Term Memory - Recurrent Neural Network and Gated Recurrent Units, and more.
The book also highlights how the use of deep neural networks can address new questions and protocols, as well as improve upon existing challenges in brain tumor segmentation.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Jyotismita Chaki, Ph.D., is an Assistant Professor in School of Computer Science and Engineering at Vellore Institute of Technology, Vellore, India. She has done her PhD (Engg) from Jadavpur University, Kolkata, India. Her research interests include: Computer Vision and Image Processing, Pattern Recognition, Medical Imaging, Artificial Intelligence and Machine learning. She has authored more than forty international conferences and journal papers. She is the author and editor of more than five books. Currently she is the academic editor of PLOS ONE journal (IF: 3.24) and Associate editor of IET Image Processing Journal (IF: 2.373), Array journal (Elsevier) and Machine Learning with Applications journal (Elsevier).
Brain Tumor MRI Image Segmentation Using Deep Learning Techniques offers a description of deep learning approaches used for the segmentation of brain tumors. The book demonstrates core concepts of deep learning algorithms by using diagrams, data tables and examples to illustrate brain tumor segmentation. After introducing basic concepts of deep learning-based brain tumor segmentation, sections cover techniques for modeling, segmentation and properties. A focus is placed on the application of different types of convolutional neural networks, like single path, multi path, fully convolutional network, cascade convolutional neural networks, Long Short-Term Memory - Recurrent Neural Network and Gated Recurrent Units, and more.
The book also highlights how the use of deep neural networks can address new questions and protocols, as well as improve upon existing challenges in brain tumor segmentation.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Da: Brook Bookstore On Demand, Napoli, NA, Italia
Condizione: new. Questo è un articolo print on demand. Codice articolo KEQVJFQFNF
Quantità: Più di 20 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Codice articolo 392649938
Quantità: 3 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 240 pages. 9.00x7.50x0.50 inches. In Stock. This item is printed on demand. Codice articolo __0323911714
Quantità: 2 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. 1st edition NO-PA16APR2015-KAP. Codice articolo 26386982669
Quantità: 3 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 43817446
Quantità: 2 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 43817446-n
Quantità: 2 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. Codice articolo 18386982663
Quantità: 3 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. New copy - Usually dispatched within 4 working days. 222. Codice articolo B9780323911719
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 43817446-n
Quantità: 2 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9780323911719_new
Quantità: Più di 20 disponibili