Articoli correlati a Introduction to Bayesian Data Analysis for Cognitive...

Introduction to Bayesian Data Analysis for Cognitive Science - Brossura

 
9780367359331: Introduction to Bayesian Data Analysis for Cognitive Science

Sinossi

This book introduces Bayesian data analysis and Bayesian cognitive modeling to students and researchers in cognitive science (e.g., linguistics, psycholinguistics, psychology, computer science), with a particular focus on modeling data from planned experiments. The book relies on the probabilistic programming language Stan and the R package brms, which is a front-end to Stan. The book only assumes that the reader is familiar with the statistical programming language R, and has basic high school exposure to pre-calculus mathematics; some of the important mathematical constructs needed for the book are introduced in the first chapter.

Through this book, the reader will be able to develop a practical ability to apply Bayesian modeling within their own field. The book begins with an informal introduction to foundational topics such as probability theory, and univariate and bi-/multivariate discrete and continuous random variables. Then, the application of Bayes' rule for statistical inference is introduced with several simple analytical examples that require no computing software; the main insight here is that the posterior distribution of a parameter is a compromise between the prior and the likelihood functions. The book then gradually builds up the regression framework using the brms package in R, ultimately leading to hierarchical regression modeling (aka the linear mixed model). Along the way, there is detailed discussion about the topic of prior selection, and developing a well-defined workflow. Later chapters introduce the Stan programming language, and cover advanced topics using practical examples: contrast coding, model comparison using Bayes factors and cross-validation, hierarchical models and reparameterization, defining custom distributions, measurement error models and meta-analysis, and finally, some examples of cognitive models: multinomial processing trees, finite mixture models, and accumulator models. Additional chapters, appendices, and exercises are provided as online materials and can be accessed here: https://github.com/bnicenboim/bayescogsci.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Bruno Nicenboim is assistant professor in the department of Cognitive Science and Artificial Intelligence at Tilburg University in the Netherlands, working within the area of computational psycholinguistics.

Daniel J. Schad is a cognitive psychologist and is professor of Quantitative Methods at the HMU Health
and Medical University in Potsdam, Germany.

Shravan Vasishth is professor of psycholinguistics at the department of Linguistics at the University of Potsdam, Germany; he is a chartered statistician (Royal Statistical Society, UK).

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Altre edizioni note dello stesso titolo

9780367358518: Introduction to Bayesian Data Analysis for Cognitive Science

Edizione in evidenza

ISBN 10:  0367358514 ISBN 13:  9780367358518
Casa editrice: Chapman and Hall/CRC, 2025
Rilegato

Risultati della ricerca per Introduction to Bayesian Data Analysis for Cognitive...

Foto dell'editore

Nicenboim, Bruno; Schad, Daniel J.; Vasishth, Shravan
Editore: Chapman and Hall/CRC, 2025
ISBN 10: 0367359332 ISBN 13: 9780367359331
Nuovo Brossura

Da: Best Price, Torrance, CA, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. SUPER FAST SHIPPING. Codice articolo 9780367359331

Contatta il venditore

Compra nuovo

EUR 67,38
Convertire valuta
Spese di spedizione: EUR 7,65
In U.S.A.
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Nicenboim, Bruno; Schad, Daniel J.; Vasishth, Shravan
Editore: Chapman and Hall/CRC, 2025
ISBN 10: 0367359332 ISBN 13: 9780367359331
Nuovo Brossura

Da: California Books, Miami, FL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo I-9780367359331

Contatta il venditore

Compra nuovo

EUR 81,62
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Nicenboim, Bruno; Schad, Daniel J.; Vasishth, Shravan
Editore: Chapman and Hall/CRC, 2025
ISBN 10: 0367359332 ISBN 13: 9780367359331
Nuovo Brossura

Da: Majestic Books, Hounslow, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 409309028

Contatta il venditore

Compra nuovo

EUR 76,49
Convertire valuta
Spese di spedizione: EUR 7,51
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: 3 disponibili

Aggiungi al carrello

Foto dell'editore

Nicenboim, Bruno; Schad, Daniel J.; Vasishth, Shravan
Editore: Chapman and Hall/CRC, 2025
ISBN 10: 0367359332 ISBN 13: 9780367359331
Nuovo Brossura

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9780367359331_new

Contatta il venditore

Compra nuovo

EUR 73,92
Convertire valuta
Spese di spedizione: EUR 13,84
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Bruno Nicenboim
Editore: Taylor & Francis Ltd, 2025
ISBN 10: 0367359332 ISBN 13: 9780367359331
Nuovo Paperback

Da: Grand Eagle Retail, Mason, OH, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: new. Paperback. This book introduces Bayesian data analysis and Bayesian cognitive modeling to students and researchers in cognitive science (e.g., linguistics, psycholinguistics, psychology, computer science), with a particular focus on modeling data from planned experiments. The book relies on the probabilistic programming language Stan and the R package brms, which is a front-end to Stan. The book only assumes that the reader is familiar with the statistical programming language R, and has basic high school exposure to pre-calculus mathematics; some of the important mathematical constructs needed for the book are introduced in the first chapter.Through this book, the reader will be able to develop a practical ability to apply Bayesian modeling within their own field. The book begins with an informal introduction to foundational topics such as probability theory, and univariate and bi-/multivariate discrete and continuous random variables. Then, the application of Bayes' rule for statistical inference is introduced with several simple analytical examples that require no computing software; the main insight here is that the posterior distribution of a parameter is a compromise between the prior and the likelihood functions. The book then gradually builds up the regression framework using the brms package in R, ultimately leading to hierarchical regression modeling (aka the linear mixed model). Along the way, there is detailed discussion about the topic of prior selection, and developing a well-defined workflow. Later chapters introduce the Stan programming language, and cover advanced topics using practical examples: contrast coding, model comparison using Bayes factors and cross-validation, hierarchical models and reparameterization, defining custom distributions, measurement error models and meta-analysis, and finally, some examples of cognitive models: multinomial processing trees, finite mixture models, and accumulator models. Additional chapters, appendices, and exercises are provided as online materials and can be accessed here: This book introduces Bayesian data analysis and Bayesian cognitive modeling to students and researchers in cognitive science (e.g. linguistics, psycholinguistics, psychology, computer science) with a focus on modeling data from planned experiments. The book relies on the probabilistic programming language Stan and the R package brms. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9780367359331

Contatta il venditore

Compra nuovo

EUR 88,99
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Nicenboim, Bruno; Schad, Daniel J.; Vasishth, Shravan
Editore: Chapman and Hall/CRC, 2025
ISBN 10: 0367359332 ISBN 13: 9780367359331
Nuovo Brossura

Da: Books Puddle, New York, NY, U.S.A.

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. 1st edition NO-PA16APR2015-KAP. Codice articolo 26403845307

Contatta il venditore

Compra nuovo

EUR 91,74
Convertire valuta
Spese di spedizione: EUR 3,40
In U.S.A.
Destinazione, tempi e costi

Quantità: 3 disponibili

Aggiungi al carrello

Foto dell'editore

Bruno Nicenboim
Editore: Taylor & Francis Ltd, 2025
ISBN 10: 0367359332 ISBN 13: 9780367359331
Nuovo Paperback / softback

Da: THE SAINT BOOKSTORE, Southport, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback / softback. Condizione: New. New copy - Usually dispatched within 4 working days. 500. Codice articolo B9780367359331

Contatta il venditore

Compra nuovo

EUR 84,42
Convertire valuta
Spese di spedizione: EUR 13,57
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Nicenboim, Bruno; Schad, Daniel J.; Vasishth, Shravan
Editore: Chapman and Hall/CRC, 2025
ISBN 10: 0367359332 ISBN 13: 9780367359331
Nuovo Brossura

Da: Biblios, Frankfurt am main, HESSE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 18403845297

Contatta il venditore

Compra nuovo

EUR 88,39
Convertire valuta
Spese di spedizione: EUR 9,95
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 3 disponibili

Aggiungi al carrello

Foto dell'editore

Bruno Nicenboim
Editore: Taylor & Francis Ltd, 2025
ISBN 10: 0367359332 ISBN 13: 9780367359331
Nuovo Paperback

Da: AussieBookSeller, Truganina, VIC, Australia

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: new. Paperback. This book introduces Bayesian data analysis and Bayesian cognitive modeling to students and researchers in cognitive science (e.g., linguistics, psycholinguistics, psychology, computer science), with a particular focus on modeling data from planned experiments. The book relies on the probabilistic programming language Stan and the R package brms, which is a front-end to Stan. The book only assumes that the reader is familiar with the statistical programming language R, and has basic high school exposure to pre-calculus mathematics; some of the important mathematical constructs needed for the book are introduced in the first chapter.Through this book, the reader will be able to develop a practical ability to apply Bayesian modeling within their own field. The book begins with an informal introduction to foundational topics such as probability theory, and univariate and bi-/multivariate discrete and continuous random variables. Then, the application of Bayes' rule for statistical inference is introduced with several simple analytical examples that require no computing software; the main insight here is that the posterior distribution of a parameter is a compromise between the prior and the likelihood functions. The book then gradually builds up the regression framework using the brms package in R, ultimately leading to hierarchical regression modeling (aka the linear mixed model). Along the way, there is detailed discussion about the topic of prior selection, and developing a well-defined workflow. Later chapters introduce the Stan programming language, and cover advanced topics using practical examples: contrast coding, model comparison using Bayes factors and cross-validation, hierarchical models and reparameterization, defining custom distributions, measurement error models and meta-analysis, and finally, some examples of cognitive models: multinomial processing trees, finite mixture models, and accumulator models. Additional chapters, appendices, and exercises are provided as online materials and can be accessed here: This book introduces Bayesian data analysis and Bayesian cognitive modeling to students and researchers in cognitive science (e.g. linguistics, psycholinguistics, psychology, computer science) with a focus on modeling data from planned experiments. The book relies on the probabilistic programming language Stan and the R package brms. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Codice articolo 9780367359331

Contatta il venditore

Compra nuovo

EUR 71,19
Convertire valuta
Spese di spedizione: EUR 31,53
Da: Australia a: U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

NICENBOIM BRUNO
Editore: Chapman and Hall/CRC, 2025
ISBN 10: 0367359332 ISBN 13: 9780367359331
Nuovo Brossura

Da: Speedyhen, London, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: NEW. Codice articolo NW9780367359331

Contatta il venditore

Compra nuovo

EUR 64,81
Convertire valuta
Spese di spedizione: EUR 47,36
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Vedi altre 5 copie di questo libro

Vedi tutti i risultati per questo libro