Models for Dependent Time Series addresses the issues that arise and the methodology that can be applied when the dependence between time series is described and modeled. Whether you work in the economic, physical, or life sciences, the book shows you how to draw meaningful, applicable, and statistically valid conclusions from multivariate (or vector) time series data.
The first four chapters discuss the two main pillars of the subject that have been developed over the last 60 years: vector autoregressive modeling and multivariate spectral analysis. These chapters provide the foundational material for the remaining chapters, which cover the construction of structural models and the extension of vector autoregressive modeling to high frequency, continuously recorded, and irregularly sampled series. The final chapter combines these approaches with spectral methods for identifying causal dependence between time series.
Web ResourceA supplementary website provides the data sets used in the examples as well as documented MATLAB® functions and other code for analyzing the examples and producing the illustrations. The site also offers technical details on the estimation theory and methods and the implementation of the models.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Granville Tunnicliffe Wilson is a reader emeritus in the Department of Mathematics and Statistics at Lancaster University, UK. His research focuses on methodology and software for time series modeling and prediction.
Marco Reale is an associate professor in the School of Mathematics and Statistics at the University of Canterbury, New Zealand. His research interests include time series analysis, statistical learning, and stochastic optimization.
John Haywood is a senior lecturer in the School of Mathematics and Statistics at Victoria University of Wellington, New Zealand. His research interests include time series analysis, seasonal modeling, and statistical applications, particularly in ecology.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 17,08 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Granville Tunnicliffe Wilson is a reader emeritus in the Department of Mathematics and Statistics at Lancaster University, UK. His research focuses on methodology and software for time series modeling and prediction. Codice articolo 594589782
Quantità: Più di 20 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. pp. 340. Codice articolo 385818875
Quantità: 3 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 41473717-n
Quantità: Più di 20 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. New copy - Usually dispatched within 4 working days. 625. Codice articolo B9780367570521
Quantità: 1 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 340 pages. 9.21x6.14x0.87 inches. In Stock. This item is printed on demand. Codice articolo __0367570521
Quantità: 1 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9780367570521_new
Quantità: Più di 20 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. pp. 340. Codice articolo 18378052398
Quantità: 3 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 41473717-n
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 41473717
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 340. Codice articolo 26378052388
Quantità: 3 disponibili