Articoli correlati a Large-Scale Machine Learning in the Earth Sciences

Large-Scale Machine Learning in the Earth Sciences - Brossura

 
9780367573232: Large-Scale Machine Learning in the Earth Sciences

Sinossi

From the Foreword:

"While large-scale machine learning and data mining have greatly impacted a range of commercial applications, their use in the field of Earth sciences is still in the early stages. This book, edited by Ashok

Srivastava, Ramakrishna Nemani, and Karsten Steinhaeuser, serves as an outstanding resource for anyone interested in the opportunities and challenges for the machine learning community in analyzing these data sets to answer questions of urgent societal interest…I hope that this book will inspire more computer scientists to focus on environmental applications, and Earth scientists to seek collaborations with researchers in machine learning and data mining to advance the frontiers in Earth sciences."

--Vipin Kumar, University of Minnesota

Large-Scale Machine Learning in the Earth Sciences provides researchers and practitioners with a broad overview of some of the key challenges in the intersection of Earth science, computer science, statistics, and related fields. It explores a wide range of topics and provides a compilation of recent research in the application of machine learning in the field of Earth Science.

Making predictions based on observational data is a theme of the book, and the book includes chapters on the use of network science to understand and discover teleconnections in extreme climate and weather events, as well as using structured estimation in high dimensions. The use of ensemble machine learning models to combine predictions of global climate models using information from spatial and temporal patterns is also explored.

The second part of the book features a discussion on statistical downscaling in climate with state-of-the-art scalable machine learning, as well as an overview of methods to understand and predict the proliferation of biological species due to changes in environmental conditions. The problem of using large-scale machine learning to study the formation of tornadoes is also explored in depth.

The last part of the book covers the use of deep learning algorithms to classify images that have very high resolution, as well as the unmixing of spectral signals in remote sensing images of land cover. The authors also apply long-tail distributions to geoscience resources, in the final chapter of the book.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Ashok N. Srivastava, Ph.D. is the VP of Data and Artificial Intelligence Systems and the Chief Data Scientist at Verizon. He leads a new research and development center in Palo Alto focusing on building products and technologies powered by big data, large-scale machine learning, and analytics. He is an Adjunct Professor at Stanford University in the Electrical Engineering Department and is the Editor-in-Chief of the AIAA Journal of Aerospace Information Systems. Dr. Srivastava is a Fellow of the IEEE, the American Association for the Advancement of Science (AAAS), and the American Institute of Aeronautics and Astronautics (AIAA).

He is the author of over 100 research articles, has edited 4 books, has 5 patents awarded, and over 30 under file. He has won numerous awards including the IEEE Computer Society Technical Achievement Award for "pioneering contributions to intelligent information systems," the NASA Exceptional Achievement Medal for contributions to state-of-the-art data mining and analysis, the NASA Honor Award for Outstanding Leadership, the NASA Distinguished Performance Award, several NASA Group Achievement Awards, the Distinguished Engineering Alumni Award from UC Boulder, the IBM Golden Circle Award, and the Department of Education Merit Fellowship.

Dr. Ramakrishna Nemani is a senior Earth scientist with the NASA Advanced Supercomputing division at Ames Research Center, California, USA. He leads NASA's efforts in ecological forecasting to understand the impacts of the impending climatic changes on Earth’s ecosystems and in collaborative computing, bringing scientists together with big data and supercomputing to provide insights into how our planet is changing and the forces underlying such changes.

He has published over 190 papers on a variety of topics including remote sensing, global ecology, ecological forecasting, climatology and scientific computing with over 28000 citations. He served on the science teams of several missions including Landsat-8, NPP, EOS/MODIS, ALOS-2 and GCOM-C. He has received numerous awards from NASA including the exceptional scientific achievement medal in 2008, exceptional achievement medal in 2011, outstanding leadership medal in 2012 and eight group achievement awards.

Karsten Steinhaeuser, Ph.D. is a Research Scientist affiliated with the Department of Computer Science & Engineering at the University of Minnesota and a Data Scientist with Progeny Systems Corporation. His research centers around data mining and machine learning, in particular construction and analysis of complex networks, with applications in diverse domains including climate, ecology, social networks, time series analysis, and computer vision. He is actively involved in shaping an emerging research area called climate informatics, which lies at the intersection of computer science and climate sciences, and his interests are more generally in interdisciplinary research and scientific problems relating to climate and sustainability.

Dr. Steinhaeuser has been awarded one patent and has authored several book chapters as well as numerous peer reviewed articles and papers on these topics. His work has been recognized with multiple awards including two Oak Ridge National Laboratory Significant Event Awards for "Novel Analyses of the Simulation Results from the CCSM 3.0 Climate Model" and "Science Support for a Climate Change War Game and Follow-Up Support to the US Department of Defense."

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: buono
Connecting readers with great books...
Visualizza questo articolo

EUR 92,28 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

EUR 10,13 per la spedizione da Regno Unito a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9781498703871: Large-Scale Machine Learning in the Earth Sciences

Edizione in evidenza

ISBN 10:  1498703879 ISBN 13:  9781498703871
Casa editrice: Chapman and Hall/CRC, 2017
Rilegato

Risultati della ricerca per Large-Scale Machine Learning in the Earth Sciences

Foto dell'editore

Editore: Chapman and Hall/CRC, 2020
ISBN 10: 0367573237 ISBN 13: 9780367573232
Nuovo Brossura

Da: Majestic Books, Hounslow, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. pp. 238. Codice articolo 385859819

Contatta il venditore

Compra nuovo

EUR 60,81
Convertire valuta
Spese di spedizione: EUR 10,13
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 3 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Editore: CRC Press, 2020
ISBN 10: 0367573237 ISBN 13: 9780367573232
Nuovo Brossura
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Ashok N. Srivastava, Ph.D. is the VP of Data and Artificial Intelligence Systems and the Chief Data Scientist at Verizon. He leads a new research and development center in Palo Alto focusing on building products and technologies powered . Codice articolo 594590051

Contatta il venditore

Compra nuovo

EUR 63,54
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Ashok N. Srivastava
Editore: Taylor & Francis Ltd, 2020
ISBN 10: 0367573237 ISBN 13: 9780367573232
Nuovo Paperback / softback

Da: THE SAINT BOOKSTORE, Southport, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback / softback. Condizione: New. New copy - Usually dispatched within 4 working days. 508. Codice articolo B9780367573232

Contatta il venditore

Compra nuovo

EUR 65,41
Convertire valuta
Spese di spedizione: EUR 9,79
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Editore: Chapman and Hall/CRC, 2020
ISBN 10: 0367573237 ISBN 13: 9780367573232
Nuovo Brossura

Da: Biblios, Frankfurt am main, HESSE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. pp. 238. Codice articolo 18378044222

Contatta il venditore

Compra nuovo

EUR 70,81
Convertire valuta
Spese di spedizione: EUR 7,95
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 3 disponibili

Aggiungi al carrello

Foto dell'editore

Editore: Chapman and Hall/CRC, 2020
ISBN 10: 0367573237 ISBN 13: 9780367573232
Nuovo Brossura

Da: Books Puddle, New York, NY, U.S.A.

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. pp. 238. Codice articolo 26378044212

Contatta il venditore

Compra nuovo

EUR 76,24
Convertire valuta
Spese di spedizione: EUR 7,69
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 3 disponibili

Aggiungi al carrello

Foto dell'editore

Editore: Chapman and Hall/CRC, 2020
ISBN 10: 0367573237 ISBN 13: 9780367573232
Antico o usato paperback

Da: HPB-Red, Dallas, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

paperback. Condizione: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Codice articolo S_431153841

Contatta il venditore

Compra usato

EUR 36,61
Convertire valuta
Spese di spedizione: EUR 92,28
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello