Making statistical modeling and inference more accessible to ecologists and related scientists, Introduction to Hierarchical Bayesian Modeling for Ecological Data gives readers a flexible and effective framework to learn about complex ecological processes from various sources of data. It also helps readers get started on building their own statistical models.
The text begins with simple models that progressively become more complex and realistic through explanatory covariates and intermediate hidden states variables. When fitting the models to data, the authors gradually present the concepts and techniques of the Bayesian paradigm from a practical point of view using real case studies. They emphasize how hierarchical Bayesian modeling supports multidimensional models involving complex interactions between parameters and latent variables. Data sets, exercises, and R and WinBUGS codes are available on the authors’ website.
This book shows how Bayesian statistical modeling provides an intuitive way to organize data, test ideas, investigate competing hypotheses, and assess degrees of confidence of predictions. It also illustrates how conditional reasoning can dismantle a complex reality into more understandable pieces. As conditional reasoning is intimately linked with Bayesian thinking, considering hierarchical models within the Bayesian setting offers a unified and coherent framework for modeling, estimation, and prediction.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Éric Parent is head of the Research Laboratory for Risk Management in Environmental Sciences (Team MORSE) and a professor in applied statistics and probabilistic modeling for environmental engineering at the National Institute for Rural Engineering, Water and Forest Management (ENGREF/AgroParisTech) in Paris, France. Dr. Parent’s research encompasses Bayesian theory and applications, with special emphasis on environmental systems modeling.
Étienne Rivot is a researcher in the Fisheries Ecology Laboratory at Agrocampus Ouest in Rennes, France. Dr. Rivot’s research focuses on the application of Bayesian statistical modeling for the analysis of ecological data, inference, and predictions.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 17,05 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiEUR 10,23 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiDa: Majestic Books, Hounslow, Regno Unito
Condizione: New. pp. 428. Codice articolo 385821552
Quantità: 3 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9780367576714
Quantità: Più di 20 disponibili
Da: moluna, Greven, Germania
Condizione: New. Codice articolo 594590385
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 41477210-n
Quantità: 10 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9780367576714_new
Quantità: Più di 20 disponibili
Da: Best Price, Torrance, CA, U.S.A.
Condizione: New. SUPER FAST SHIPPING. Codice articolo 9780367576714
Quantità: 1 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. New copy - Usually dispatched within 4 working days. 789. Codice articolo B9780367576714
Quantità: 1 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. pp. 428. Codice articolo 18378049701
Quantità: 3 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 41477210-n
Quantità: 10 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 41477210
Quantità: 10 disponibili