Recommender systems use information filtering to predict user preferences. They are becoming a vital part of e-business and are used in a wide variety of industries, ranging from entertainment and social networking to information technology, tourism, education, agriculture, healthcare, manufacturing, and retail. Recommender Systems: Algorithms and Applications dives into the theoretical underpinnings of these systems and looks at how this theory is applied and implemented in actual systems.
The book examines several classes of recommendation algorithms, including
Various efficient and robust product recommender systems using machine learning algorithms are helpful in filtering and exploring unseen data by users for better prediction and extrapolation of decisions. These are providing a wider range of solutions to such challenges as imbalanced data set problems, cold-start problems, and long tail problems. This book also looks at fundamental ontological positions that form the foundations of recommender systems and explain why certain recommendations are predicted over others.
Techniques and approaches for developing recommender systems are also investigated. These can help with implementing algorithms as systems and include
Finally, this book examines actual systems for social networking, recommending consumer products, and predicting risk in software engineering projects.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Dr. P. Pavan Kumar received a Ph.D. degree from JNTU, Anantapur, India. He is an Assistant Professor in the Department of Computer Science and Engineering at ICFAI Foundation for Higher Education (IFHE), Hyderabad. His research interests include real-time systems, multi-core systems, high-performance systems, computer vision.
Dr. S. Vairachilai earned a Ph.D. degree in Information Technology from Anna University, India. She is an Assistant Professor in the Department of CSE at ICFAI Foundation for Higher Education (IFHE), Hyderabad, Telangana. Prior to this she served in teaching roles an Kalasalingam University and N.P.R College of Engineering and Technology, Tamilnadu, India. Her research interests include Machine Learning, Recommender System and Social Network Analysis.
Sirisha Potluri is an Assistant Professor in the Department of Computer Science & Engineering at ICFAI Foundation for Higher Education, Hyderabad. She is pursuing a Ph.D. degree in the area of cloud computing. Her research areas include distributed computing, cloud computing, fog computing, recommender systems and IoT.
Dr. Sachi Nandan Mohanty received a Ph.D. degree from IIT Kharagpur, India. He is an Associate Professor in the Department of Computer Science & Engineering at ICFAI Foundation for Higher Education Hyderabad. Prof. Mohanty’s research areas include data mining, big data analysis, cognitive science, fuzzy decision making, brain-computer interface, and computational intelligence.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 48136260
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 48136260-n
Quantità: Più di 20 disponibili
Da: Grand Eagle Retail, Bensenville, IL, U.S.A.
Paperback. Condizione: new. Paperback. Recommender systems use information filtering to predict user preferences. They are becoming a vital part of e-business and are used in a wide variety of industries, ranging from entertainment and social networking to information technology, tourism, education, agriculture, healthcare, manufacturing, and retail. Recommender Systems: Algorithms and Applications dives into the theoretical underpinnings of these systems and looks at how this theory is applied and implemented in actual systems. The book examines several classes of recommendation algorithms, including Machine learning algorithms Community detection algorithms Filtering algorithmsVarious efficient and robust product recommender systems using machine learning algorithms are helpful in filtering and exploring unseen data by users for better prediction and extrapolation of decisions. These are providing a wider range of solutions to such challenges as imbalanced data set problems, cold-start problems, and long tail problems. This book also looks at fundamental ontological positions that form the foundations of recommender systems and explain why certain recommendations are predicted over others. Techniques and approaches for developing recommender systems are also investigated. These can help with implementing algorithms as systems and include A latent-factor technique for model-based filtering systems Collaborative filtering approaches Content-based approachesFinally, this book examines actual systems for social networking, recommending consumer products, and predicting risk in software engineering projects. Recommender systems use information filtering to predict user preferences. They are becoming a vital part of e-business. Recommender Systems: Algorithms and Applications dives into the theoretical underpinnings of these systems and looks at how theory is applied and implemented in actual systems. This item is printed on demand. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9780367631871
Quantità: 1 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. xvii, 230 pages, illustrations. Codice articolo 399112833
Quantità: 3 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. xvii, 230 pages, illustrations First edition Includes bibliographical references and index. Codice articolo 26398345566
Quantità: 3 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9780367631871_new
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: As New. Unread book in perfect condition. Codice articolo 48136260
Quantità: Più di 20 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. xvii, 230 pages, illustrations. Codice articolo 18398345556
Quantità: 3 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 48136260-n
Quantità: Più di 20 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. New copy - Usually dispatched within 4 working days. Codice articolo B9780367631871
Quantità: 1 disponibili