An Introduction to Compressible Flow, Second Edition covers the material typical of a single-semester course in compressible flow. The book begins with a brief review of thermodynamics and control volume fluid dynamics, then proceeds to cover isentropic flow, normal shock waves, shock tubes, oblique shock waves, Prandtl-Meyer expansion fans, Fanno-line flow, Rayleigh-line flow, and conical shock waves.
The book includes a chapter on linearized flow following chapters on oblique shocks and Prandtl-Meyer flows to appropriately ground students in this approximate method. It includes detailed appendices to support problem solutions and covers new oblique shock tables, which allow for quick and accurate solutions of flows with concave corners.
The book is intended for senior undergraduate engineering students studying thermal-fluids and practicing engineers in the areas of aerospace or energy conversion. This book is also useful in providing supplemental coverage of compressible flow material in gas turbine and aerodynamics courses.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Forrest Ames has been Professor of Mechanical Engineering at the University of North Dakota (UND) for the last 22 years. Dr. Ames began his career at Allison Gas Turbine Div. of General Motors where he worked in the research laboratories. Dr. Ames has conducted research in the area of gas turbine heat transfer and aerodynamics for over 35 years. At UND, Dr. Ames is responsible for teaching in the thermal fluids area of mechanical engineering and regularly teaches classes on compressible flow, aerodynamics, gas turbines, thermodynamics, computational fluid dynamics, convective heat transfer and fluid dynamics. Dr. Ames has been a member of the Heat Transfer Committee of the International Gas Turbine Institute for over 20 years. He has been a regular contributor to ASME Turbo Expo technical sessions as author, presenter, reviewer and session organizer in the areas of turbine aerodynamics and heat transfer. He is a Fellow of the ASME.
Clement Tang is an Associate Professor of Mechanical Engineering at the University of North Dakota (UND). He joined UND as a faculty member in 2011. Dr. Tang has research experience in the area of multiphase flow heat transfer and aerodynamics of thin flexible materials. He has been conducting experimental research in gas-liquid two-phase flow heat transfer for over 15 years. At UND, Dr. Tang has taught compressible flow, heat and mass transfer, heat conduction & radiation, HVAC, mechanical measurements, multiphase flow heat transfer, and thermodynamics.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 17,19 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiGRATIS per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiDa: Basi6 International, Irving, TX, U.S.A.
Condizione: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Codice articolo ABEJUNE24-82886
Quantità: 8 disponibili
Da: Romtrade Corp., STERLING HEIGHTS, MI, U.S.A.
Condizione: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Codice articolo ABNR-12674
Quantità: 2 disponibili
Da: SMASS Sellers, IRVING, TX, U.S.A.
Condizione: New. Brand New Original US Edition. Customer service! Satisfaction Guaranteed. Codice articolo ASNT3-12674
Quantità: 2 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. xi, 283 pages, illustrations Second edition Includes bibliographical references and index. Codice articolo 26397755152
Quantità: 4 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Forrest Ames has been Professor of Mechanical Engineering at the University of North Dakota (UND) for the last 22 years. Dr. Ames began his career at Allison Gas Turbine Div. of General Motors where he worked in the research laboratories. Dr. Ames has co. Codice articolo 897893208
Quantità: Più di 20 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. xi, 283 pages, illustrations. Codice articolo 18397755162
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. xi, 283 pages, illustrations. Codice articolo 398654671
Quantità: 4 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -An Introduction to Compressible Flow, Second Edition covers the material typical of a single-semester course in compressible flow. The book begins with a brief review of thermodynamics and control volume fluid dynamics, then proceeds to cover isentropic flow, normal shock waves, shock tubes, oblique shock waves, Prandtl-Meyer expansion fans, Fanno-line flow, Rayleigh-line flow, and conical shock waves.The book includes a chapter on linearized flow following chapters on oblique shocks and Prandtl-Meyer flows to appropriately ground students in this approximate method. It includes detailed appendices to support problem solutions and covers new oblique shock tables, which allow for quick and accurate solutions of flows with concave corners.The book is intended for senior undergraduate engineering students studying thermal-fluids and practicing engineers in the areas of aerospace or energy conversion. This book is also useful in providing supplemental coverage of compressible flow material in gas turbine and aerodynamics courses. 284 pp. Englisch. Codice articolo 9780367697792
Quantità: 2 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. New copy - Usually dispatched within 4 working days. 453. Codice articolo B9780367697792
Quantità: 1 disponibili
Da: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condizione: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9780367697792
Quantità: Più di 20 disponibili