Given their tremendous success in commercial applications, machine learning (ML) models are increasingly being considered as alternatives to science-based models in many disciplines. Yet, these "black-box" ML models have found limited success due to their inability to work well in the presence of limited training data and generalize to unseen scenarios. As a result, there is a growing interest in the scientific community on creating a new generation of methods that integrate scientific knowledge in ML frameworks. This emerging field, called scientific knowledge-guided ML (KGML), seeks a distinct departure from existing "data-only" or "scientific knowledge-only" methods to use knowledge and data at an equal footing. Indeed, KGML involves diverse scientific and ML communities, where researchers and practitioners from various backgrounds and application domains are continually adding richness to the problem formulations and research methods in this emerging field.
Knowledge Guided Machine Learning: Accelerating Discovery using Scientific Knowledge and Data provides an introduction to this rapidly growing field by discussing some of the common themes of research in KGML using illustrative examples, case studies, and reviews from diverse application domains and research communities as book chapters by leading researchers.
KEY FEATURES
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Anuj Karpatne is an Assistant Professor in the Department of Computer Science at Virginia Tech. His research focuses on pushing on the frontiers of knowledge-guided machine learning by combining scientific knowledge and data in the design and learning of machine learning methods to solve scientific and societally relevant problems.
Ramakrishnan Kannan is the group leader for Discrete Algorithms at Oak Ridge National Laboratory. His research expertise is in distributed machine learning and graph algorithms on HPC platforms and their application to scientific data with a specific interest for accelerating scientific discovery.
Vipin Kumar is a Regents Professor at the University of Minnesota’s Computer Science and Engineering Department. His current major research focus is on knowledge-guided machine learning and its applications to understanding the impact of human induced changes on the Earth and its environment.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 17,08 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiEUR 8,10 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiDa: Speedyhen, London, Regno Unito
Condizione: NEW. Codice articolo NW9780367698201
Quantità: 1 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pages cm First edition Includes bibliographical references and index. Codice articolo 26397715736
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. pages cm. Codice articolo 398661319
Quantità: 3 disponibili
Da: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condizione: New. 2024. 1st Edition. paperback. . . . . . Codice articolo V9780367698201
Quantità: 1 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND pages cm. Codice articolo 18397715730
Quantità: 4 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9780367698201_new
Quantità: Più di 20 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Other book format. Condizione: New. New copy - Usually dispatched within 4 working days. 920. Codice articolo B9780367698201
Quantità: 1 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 442 pages. 10.00x7.00x10.00 inches. In Stock. This item is printed on demand. Codice articolo __036769820X
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Condizione: New. Anuj Karpatne is an Assistant Professor in the Department of Computer Science at Virginia Tech. His research focuses on pushing on the frontiers of knowledge-guided machine learning by combining scientific knowledge and data in the design and learning of. Codice articolo 1721046577
Quantità: 1 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 47911717-n
Quantità: Più di 20 disponibili