Bayesian Modeling and Computation in Python aims to help beginner Bayesian practitioners to become intermediate modelers. It uses a hands on approach with PyMC3, Tensorflow Probability, ArviZ and other libraries focusing on the practice of applied statistics with references to the underlying mathematical theory.
The book starts with a refresher of the Bayesian Inference concepts. The second chapter introduces modern methods for Exploratory Analysis of Bayesian Models. With an understanding of these two fundamentals the subsequent chapters talk through various models including linear regressions, splines, time series, Bayesian additive regression trees. The final chapters include Approximate Bayesian Computation, end to end case studies showing how to apply Bayesian modelling in different settings, and a chapter about the internals of probabilistic programming languages. Finally the last chapter serves as a reference for the rest of the book by getting closer into mathematical aspects or by extending the discussion of certain topics.
This book is written by contributors of PyMC3, ArviZ, Bambi, and Tensorflow Probability among other libraries.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Osvaldo A. Martin is a Researcher at IMASL-CONICET in Argentina and the Department of Computer Science from Aalto University in Finland. He has a PhD in biophysics and structural bioinformatics. Over the years he has become increasingly interested in data analysis problems with a Bayesian flavor. He is especially motivated by the development and implementation of software tools for Bayesian statistics and probabilistic modeling.
Ravin Kumar is a Data Scientist at Google and previously worked at SpaceX and sweetgreen among other companies. He has an M.S in Manufacturing Engineering and a B.S in Mechanical Engineering. He found Bayesian statistics to be an excellent tool for modeling organizations and informing strategy. This interest in flexible statistical modeling led to a warm welcoming open source community which he is honored to be a member of now.
Junpeng Lao is a Data Scientist at Google. Prior to that he did his PhD and subsequently worked as a postdoc in Cognitive Neuroscience. He developed a fondness for Bayesian Statistics and generative modeling after working primarily with Bootstrapping and Permutation during his academic life.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 5,72 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiEUR 8,00 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiDa: Better World Books Ltd, Dunfermline, Regno Unito
Condizione: Good. Ships from the UK. Used book that is in clean, average condition without any missing pages. Codice articolo 52604497-20
Quantità: 1 disponibili
Da: Books From California, Simi Valley, CA, U.S.A.
Hardcover. Condizione: Fine. Codice articolo mon0002914410
Quantità: 3 disponibili
Da: Speedyhen, London, Regno Unito
Condizione: NEW. Codice articolo NW9780367894368
Quantità: 1 disponibili
Da: Feldman's Books, Menlo Park, CA, U.S.A.
Hardcover. Condizione: Fine. 1st Edition. Codice articolo 045764
Quantità: 1 disponibili
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
HRD. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo GB-9780367894368
Quantità: 1 disponibili
Da: PBShop.store US, Wood Dale, IL, U.S.A.
HRD. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo GB-9780367894368
Quantità: 1 disponibili
Da: Chiron Media, Wallingford, Regno Unito
Hardcover. Condizione: New. Codice articolo 6666-TNFPD-9780367894368
Quantità: 5 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Hardback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days. Codice articolo C9780367894368
Quantità: 5 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Hardback. Condizione: New. New copy - Usually dispatched within 4 working days. 209. Codice articolo B9780367894368
Quantità: 1 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9780367894368_new
Quantità: Più di 20 disponibili