It is widely acknowledged that the cost of validation and testing comprises a s- nificant percentage of the overall development costs for electronic systems today, and is expected to escalate sharply in the future. Many studies have shown that up to 70% of the design development time and resources are spent on functional verification. Functional errors manifest themselves very early in the design flow, and unless they are detected up front, they can result in severe consequence- both financially and from a safety viewpoint. Indeed, several recent instances of high-profile functional errors (e. g. , the Pentium FDIV bug) have resulted in - creased attention paid to verifying the functional correctness of designs. Recent efforts have proposed augmenting the traditional RTL simulation-based validation methodology with formal techniques in an attempt to uncover hard-to-find c- ner cases, with the goal of trying to reach RTL functional verification closure. However, what is often not highlighted is the fact that in spite of the tremendous time and effort put into such efforts at the RTL and lower levels of abstraction, the complexity of contemporary embedded systems makes it difficult to guarantee functional correctness at the system level under all possible operational scenarios. The problem is exacerbated in current System-on-Chip (SOC) design meth- ologies that employ Intellectual Property (IP) blocks composed of processor cores, coprocessors, and memory subsystems. Functional verification becomes one of the major bottlenecks in the design of such systems.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Validation of programmable architectures, consisting of processor cores, coprocessors, and memory subsystems, is one of the major bottlenecks in current System-on-Chip design methodology. A critical challenge in validation of such systems is the lack of a golden reference model. As a result, many existing validation techniques employ a bottom-up approach to design verification, where the functionality of an existing architecture is, in essence, reverse-engineered from its implementation. Traditional validation techniques employ different reference models depending on the abstraction level and verification task, resulting in potential inconsistencies between multiple reference models.
This book presents a top-down validation methodology that complements the existing bottom-up approaches. It leverages the system architect’s knowledge about the behavior of the design through architecture specification using an Architecture Description Language (ADL). The authors also address two fundamental challenges in functional verification: lack of a golden reference model, and lack of a comprehensive functional coverage metric.
Functional Verification of Programmable Embedded Architectures: A Top-Down Approach is designed for students, researchers, CAD tool developers, designers, and managers interested in the development of tools, techniques and methodologies for system-level design, microprocessor validation, design space exploration and functional verification of embedded systems.Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
GRATIS per la spedizione da Germania a Italia
Destinazione, tempi e costiGRATIS per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiDa: Romtrade Corp., STERLING HEIGHTS, MI, U.S.A.
Condizione: New. Brand New. Soft Cover International Edition. Different ISBN and Cover Image. Priced lower than the standard editions which is usually intended to make them more affordable for students abroad. The core content of the book is generally the same as the standard edition. The country selling restrictions may be printed on the book but is no problem for the self-use. This Item maybe shipped from US or any other country as we have multiple locations worldwide. Codice articolo ABNR-241732
Quantità: 2 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. pp. 202. Codice articolo 18282385
Quantità: 4 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 202. Codice articolo 26282395
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. pp. 202 52:B&W 6.14 x 9.21in or 234 x 156mm (Royal 8vo) Case Laminate on White w/Gloss Lam. Codice articolo 7598276
Quantità: 4 disponibili
Da: Romtrade Corp., STERLING HEIGHTS, MI, U.S.A.
Condizione: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Codice articolo ABNR-77812
Quantità: 2 disponibili
Da: Basi6 International, Irving, TX, U.S.A.
Condizione: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Codice articolo ABEJUNE24-85148
Quantità: 9 disponibili
Da: Basi6 International, Irving, TX, U.S.A.
Condizione: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Codice articolo ABEJUNE24-85149
Quantità: 1 disponibili
Da: Romtrade Corp., STERLING HEIGHTS, MI, U.S.A.
Condizione: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Codice articolo ABNR-85945
Quantità: 1 disponibili
Da: Buchpark, Trebbin, Germania
Condizione: Sehr gut. Zustand: Sehr gut - Gepflegter, sauberer Zustand. | Seiten: 180 | Sprache: Englisch | Produktart: Bücher. Codice articolo 2921880/2
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Gebunden. Condizione: New. Includes the latest studies/statistics on both verification complexity and design failuresProvides a complete view of the existing specification languages for programmable architecturesDemonstrates the development of functional fault models. Codice articolo 5909615
Quantità: Più di 20 disponibili