This is the first of two books on methods and techniques in the calculus of variations. Contemporary arguments are used throughout the text to streamline and present in a unified way classical results, and to provide novel contributions at the forefront of the theory.
This book addresses fundamental questions related to lower semicontinuity and relaxation of functionals within the unconstrained setting, mainly in L^p spaces. It prepares the ground for the second volume where the variational treatment of functionals involving fields and their derivatives will be undertaken within the framework of Sobolev spaces.
This book is self-contained. All the statements are fully justified and proved, with the exception of basic results in measure theory, which may be found in any good textbook on the subject. It also contains several exercises. Therefore,it may be used both as a graduate textbook as well as a reference text for researchers in the field.
Irene Fonseca is the Mellon College of Science Professor of Mathematics and is currently the Director of the Center for Nonlinear Analysis in the Department of Mathematical Sciences at Carnegie Mellon University.
Her research interests lie in the areas of continuum mechanics, calculus of variations, geometric measure theory and partial differential equations.
Giovanni Leoni is also a professor in the Department of Mathematical Sciences at Carnegie Mellon University. He focuses his research on calculus of variations, partial differential equations and geometric measure theory with special emphasis on applications to problems in continuum mechanics and in materials science.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
This is the first of two books on methods and techniques in the calculus of variations. Contemporary arguments are used throughout the text to streamline and present in a unified way classical results, and to provide novel contributions at the forefront of the theory.
This book addresses fundamental questions related to lower semicontinuity and relaxation of functionals within the unconstrained setting, mainly in L^p spaces. It prepares the ground for the second volume where the variational treatment of functionals involving fields and their derivatives will be undertaken within the framework of Sobolev spaces.
This book is self-contained. All the statements are fully justified and proved, with the exception of basic results in measure theory, which may be found in any good textbook on the subject. It also contains several exercises. Therefore,it may be used both as a graduate textbook as well as a reference text for researchers in the field.
Irene Fonseca is the Mellon College of Science Professor of Mathematics and is currently the Director of the Center for Nonlinear Analysis in the Department of Mathematical Sciences at Carnegie Mellon University.
Her research interests lie in the areas of continuum mechanics, calculus of variations, geometric measure theory and partial differential equations.
Giovanni Leoni is also a professor in the Department of Mathematical Sciences at Carnegie Mellon University. He focuses his research on calculus of variations, partial differential equations and geometric measure theory with special emphasis on applications to problems in continuum mechanics and in materials science.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 3,19 per la spedizione in U.S.A.
Destinazione, tempi e costiEUR 2,24 per la spedizione in U.S.A.
Destinazione, tempi e costiDa: HPB-Red, Dallas, TX, U.S.A.
hardcover. Condizione: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Codice articolo S_351851053
Quantità: 1 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 4916030-n
Quantità: Più di 20 disponibili
Da: Best Price, Torrance, CA, U.S.A.
Condizione: New. SUPER FAST SHIPPING. Codice articolo 9780387357843
Quantità: 2 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Feb2215580172124
Quantità: Più di 20 disponibili
Da: BargainBookStores, Grand Rapids, MI, U.S.A.
Hardback or Cased Book. Condizione: New. Modern Methods in the Calculus of Variations: L^p Spaces 2.01. Book. Codice articolo BBS-9780387357843
Quantità: 5 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9780387357843
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 4916030
Quantità: Più di 20 disponibili
Da: Anybook.com, Lincoln, Regno Unito
Condizione: Good. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. In good all round condition. No dust jacket. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,1050grams, ISBN:9780387357843. Codice articolo 4136453
Quantità: 1 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9780387357843_new
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This is the first of two books on methods and techniques in the calculus of variations. Contemporary arguments are used throughout the text to streamline and present in a unified way classical results, and to provide novel contributions at the forefront of the theory.This book addresses fundamental questions related to lower semicontinuity and relaxation of functionals within the unconstrained setting, mainly in L^p spaces. It prepares the ground for the second volume where the variational treatment of functionals involving fields and their derivatives will be undertaken within the framework of Sobolev spaces.This book is self-contained. All the statements are fully justified and proved, with the exception of basic results in measure theory, which may be found in any good textbook on the subject. It also contains several exercises. Therefore,it may be used both as a graduate textbook as well as a reference text for researchers in the field.Irene Fonseca is the Mellon College of Science Professor of Mathematics and is currently the Director of the Center for Nonlinear Analysis in the Department of Mathematical Sciences at Carnegie Mellon University.Her research interests lie in the areas of continuum mechanics, calculus of variations, geometric measure theory and partial differential equations.Giovanni Leoni is also a professor in the Department of Mathematical Sciences at Carnegie Mellon University. He focuses his research on calculus of variations, partial differential equations and geometric measure theory with special emphasis on applications to problems in continuum mechanics and in materials science. 620 pp. Englisch. Codice articolo 9780387357843
Quantità: 2 disponibili