# Projective Geometry

## Coxeter, H. S. M.

Valutazione media 3,94
( su 18 valutazioni fornite da GoodReads )

In Euclidean geometry, constructions are made with ruler and compass. Projective geometry is simpler: its constructions require only a ruler. In projective geometry one never measures anything, instead, one relates one set of points to another by a projectivity. The first two chapters of this book introduce the important concepts of the subject and provide the logical foundations. The third and fourth chapters introduce the famous theorems of Desargues and Pappus. Chapters 5 and 6 make use of projectivities on a line and plane, respectively. The next three chapters develop a self-contained account of von Staudt's approach to the theory of conics. The modern approach used in that development is exploited in Chapter 10, which deals with the simplest finite geometry that is rich enough to illustrate all the theorems nontrivially. The concluding chapters show the connections among projective, Euclidean, and analytic geometry.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Contenuti:

1 Introduction.- 1.1 What is projective geometry?.- 1.2 Historical remarks.- 1.3 Definitions.- 1.4 The simplest geometric objects.- 1.5 Projectivities.- 1.6 Perspectivities.- 2 Triangles and Quadrangles.- 2.1 Axioms.- 2.2 Simple consequences of the axioms.- 2.3 Perspective triangles.- 2.4 Quadrangular sets.- 2.5 Harmonic sets.- 3 The Principle of Duality.- 3.1 The axiomatic basis of the principle of duality.- 3.2 The Desargues configuration.- 3.3 The invariance of the harmonic relation.- 3.4 Trilinear polarity.- 3.5 Harmonic nets.- 4 The Fundamental Theorem and Pappus’s Theorem.- 4.1 How three pairs determine a projectivity.- 4.2 Some special projectivities.- 4.3 The axis of a projectivity.- 4.4 Pappus and Desargues.- 5 One-dimensional Projectivities.- 5.1 Superposed ranges.- 5.2 Parabolic projectivities.- 5.3 Involutions.- 5.4 Hyperbolic involutions.- 6 Two-dimensional Projectivities.- 6.1 Projective collineations.- 6.2 Perspective collineations.- 6.3 Involutory collineations.- 6.4 Projective correlations.- 7 Polarities.- 7.1 Conjugate points and conjugate lines.- 7.2 The use of a self-polar triangle.- 7.3 Polar triangles.- 7.4 A construction for the polar of a point.- 7.5 The use of a self-polar pentagon.- 7.6 A self-conjugate quadrilateral.- 7.7 The product of two polarities.- 7.8 The self-polarity of the Desargues configuration.- 8 The Conic.- 8.1 How a hyperbolic polarity determines a conic.- 8.2 The polarity induced by a conic.- 8.3 Projectively related pencils.- 8.4 Conics touching two lines at given points.- 8.5 Steiner’s definition for a conic.- 9 The Conic, Continued.- 9.1 The conic touching five given lines.- 9.2 The conic through five given points.- 9.3 Conics through four given points.- 9.4 Two self-polar triangles.- 9.5 Degenerate conies.- 10 A Finite Projective Plane.- 10.1 The idea of a finite geometry.- 10.2 A combinatorial scheme for PG(2, 5).- 10.3 Verifying the axioms.- 10.4 Involutions.- 10.5 Collineations and correlations.- 10.6 Conies.- 11 Parallelism.- 11.1 Is the circle a conic?.- 11.2 Affine space.- 11.3 How two coplanar lines determine a flat pencil and a bundle.- 11.4 How two planes determine an axial pencil.- 11.5 The language of pencils and bundles.- 11.6 The plane at infinity.- 11.7 Euclidean space.- 12 Coordinates.- 12.1 The idea of analytic geometry.- 12.2 Definitions.- 12.3 Verifying the axioms for the projective plane.- 12.4 Projective collineations.- 12.5 Polarities.- 12.6 Conics.- 12.7 The analytic geometry of PG(2, 5).- 12.8 Cartesian coordinates.- 12.9 Planes of characteristic two.- Answers to Exercises.- References.

Dalla quarta di copertina:

In Euclidean geometry, constructions are made with a ruler and compass. Projective geometry is simpler: its constructions require only a ruler. In projective geometry one never measures anything, instead, one relates one set of points to another by a projectivity.

This classic book introduces the important concepts of the subject and provides the logical foundations, including the famous theorems of Desargues and Pappus and a self-contained account of von Staudt's approach to the theory of conics. The modern approach used in this account is then utilized to deal with the simplest finite geometry that is rich enough to illustrate all the theorems nontrivially. The book concludes by demonstrating the connections among projective, Euclidean, and analytic geometry.

From the reviews of Projective Geometry:

...The book is written with all the grace and lucidity that characterize the author's other writings. ...

-T. G. Room, Mathematical Reviews

This is an elementary introduction to projective geometry based on the intuitive notions of perspectivity and projectivity and, formally, on axioms essentially the same as the classical ones of Vebber and Young...This book is an excellent introduction.

- T. G. Ostrom, Zentralblatt

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra nuovo Guarda l'articolo
EUR 21,61

Spese di spedizione: EUR 5,55
Da: Germania a: U.S.A.

Destinazione, tempi e costi

Aggiungere al carrello

## 1.Projective Geometry

Editore: Springer (2003)
ISBN 10: 0387406239 ISBN 13: 9780387406237
Nuovi Brossura Quantità: 5
Print on Demand
Da
Valutazione libreria

Descrizione libro Springer, 2003. Condizione libro: New. This item is printed on demand for shipment within 3 working days. Codice libro della libreria KP9780387406237

Compra nuovo
EUR 21,61
Convertire valuta
Spese di spedizione: EUR 5,55
Da: Germania a: U.S.A.
Destinazione, tempi e costi

## 2.Projective Geometry (Paperback)

Editore: Springer-Verlag New York Inc., United States (2003)
ISBN 10: 0387406239 ISBN 13: 9780387406237
Nuovi Paperback Quantità: 1
Da
The Book Depository US
(London, Regno Unito)
Valutazione libreria

Descrizione libro Springer-Verlag New York Inc., United States, 2003. Paperback. Condizione libro: New. 2nd ed. 1974. 2nd printing 2003. 234 x 155 mm. Language: English . Brand New Book. In Euclidean geometry, constructions are made with ruler and compass. Projective geometry is simpler: its constructions require only a ruler. In projective geometry one never measures anything, instead, one relates one set of points to another by a projectivity. The first two chapters of this book introduce the important concepts of the subject and provide the logical foundations. The third and fourth chapters introduce the famous theorems of Desargues and Pappus. Chapters 5 and 6 make use of projectivities on a line and plane, respectively. The next three chapters develop a self-contained account of von Staudt s approach to the theory of conics. The modern approach used in that development is exploited in Chapter 10, which deals with the simplest finite geometry that is rich enough to illustrate all the theorems nontrivially. The concluding chapters show the connections among projective, Euclidean, and analytic geometry. Codice libro della libreria LIB9780387406237

Compra nuovo
EUR 36,75
Convertire valuta
Spese di spedizione: GRATIS
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

## 3.Projective Geometry (Paperback)

Editore: Springer-Verlag New York Inc., United States (2003)
ISBN 10: 0387406239 ISBN 13: 9780387406237
Nuovi Paperback Quantità: 1
Da
The Book Depository
(London, Regno Unito)
Valutazione libreria

Descrizione libro Springer-Verlag New York Inc., United States, 2003. Paperback. Condizione libro: New. 2nd ed. 1974. 2nd printing 2003. 234 x 155 mm. Language: English . Brand New Book. In Euclidean geometry, constructions are made with ruler and compass. Projective geometry is simpler: its constructions require only a ruler. In projective geometry one never measures anything, instead, one relates one set of points to another by a projectivity. The first two chapters of this book introduce the important concepts of the subject and provide the logical foundations. The third and fourth chapters introduce the famous theorems of Desargues and Pappus. Chapters 5 and 6 make use of projectivities on a line and plane, respectively. The next three chapters develop a self-contained account of von Staudt s approach to the theory of conics. The modern approach used in that development is exploited in Chapter 10, which deals with the simplest finite geometry that is rich enough to illustrate all the theorems nontrivially. The concluding chapters show the connections among projective, Euclidean, and analytic geometry. Codice libro della libreria LIB9780387406237

Compra nuovo
EUR 36,93
Convertire valuta
Spese di spedizione: GRATIS
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

## 4.Projective Geometry

Editore: Springer-Verlag New York Inc. 2003-10-09, New York, NY (2003)
ISBN 10: 0387406239 ISBN 13: 9780387406237
Nuovi paperback Quantità: > 20
Da
Blackwell's
(Oxford, OX, Regno Unito)
Valutazione libreria

Descrizione libro Springer-Verlag New York Inc. 2003-10-09, New York, NY, 2003. paperback. Condizione libro: New. Codice libro della libreria 9780387406237

Compra nuovo
EUR 37,93
Convertire valuta
Spese di spedizione: EUR 5,35
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

## 5.Projective Geometry

Editore: Springer-Verlag New York Inc. (2003)
ISBN 10: 0387406239 ISBN 13: 9780387406237
Nuovi Quantità: > 20
Print on Demand
Da
PBShop
(Wood Dale, IL, U.S.A.)
Valutazione libreria

Descrizione libro Springer-Verlag New York Inc., 2003. PAP. Condizione libro: New. New Book. Shipped from US within 10 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice libro della libreria IQ-9780387406237

Compra nuovo
EUR 42,28
Convertire valuta
Spese di spedizione: EUR 3,66
In U.S.A.
Destinazione, tempi e costi

## 6.Projective Geometry

Editore: Springer (2003)
ISBN 10: 0387406239 ISBN 13: 9780387406237
Nuovi Paperback Quantità: 1
Da
Irish Booksellers
(Rumford, ME, U.S.A.)
Valutazione libreria

Descrizione libro Springer, 2003. Paperback. Condizione libro: New. book. Codice libro della libreria 0387406239

Compra nuovo
EUR 48,23
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

## 7.Projective Geometry

Editore: Springer-Verlag New York Inc. (2003)
ISBN 10: 0387406239 ISBN 13: 9780387406237
Nuovi Quantità: > 20
Print on Demand
Da
Books2Anywhere
(Fairford, GLOS, Regno Unito)
Valutazione libreria

Descrizione libro Springer-Verlag New York Inc., 2003. PAP. Condizione libro: New. New Book. Delivered from our UK warehouse in 3 to 5 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice libro della libreria LQ-9780387406237

Compra nuovo
EUR 38,81
Convertire valuta
Spese di spedizione: EUR 10,69
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

## 8.Projective Geometry

Editore: Springer (2016)
ISBN 10: 0387406239 ISBN 13: 9780387406237
Nuovi Paperback Quantità: 1
Print on Demand
Da
Ria Christie Collections
(Uxbridge, Regno Unito)
Valutazione libreria

Descrizione libro Springer, 2016. Paperback. Condizione libro: New. PRINT ON DEMAND Book; New; Publication Year 2016; Not Signed; Fast Shipping from the UK. No. book. Codice libro della libreria ria9780387406237_lsuk

Compra nuovo
EUR 46,59
Convertire valuta
Spese di spedizione: EUR 4,15
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

## 9.Projective Geometry

Editore: Springer (2003)
ISBN 10: 0387406239 ISBN 13: 9780387406237
Nuovi Paperback Quantità: 1
Da
Herb Tandree Philosophy Books
(Stroud, GLOS, Regno Unito)
Valutazione libreria

Descrizione libro Springer, 2003. Paperback. Condizione libro: NEW. 9780387406237 This listing is a new book, a title currently in-print which we order directly and immediately from the publisher. Codice libro della libreria HTANDREE0411035

Compra nuovo
EUR 41,61
Convertire valuta
Spese di spedizione: EUR 9,51
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

## 10.Projective Geometry

Editore: Springer-Verlag Gmbh Okt 2003 (2003)
ISBN 10: 0387406239 ISBN 13: 9780387406237
Nuovi Taschenbuch Quantità: 1
Valutazione libreria

Descrizione libro Springer-Verlag Gmbh Okt 2003, 2003. Taschenbuch. Condizione libro: Neu. 236x154x15 mm. Neuware - In Euclidean geometry, constructions are made with ruler and compass. Projective geometry is simpler: its constructions require only a ruler. In projective geometry one never measures anything, instead, one relates one set of points to another by a projectivity. The first two chapters of this book introduce the important concepts of the subject and provide the logical foundations. The third and fourth chapters introduce the famous theorems of Desargues and Pappus. Chapters 5 and 6 make use of projectivities on a line and plane, respectively. The next three chapters develop a self-contained account of von Staudt's approach to the theory of conics. The modern approach used in that development is exploited in Chapter 10, which deals with the simplest finite geometry that is rich enough to illustrate all the theorems nontrivially. The concluding chapters show the connections among projective, Euclidean, and analytic geometry. 162 pp. Englisch. Codice libro della libreria 9780387406237

Compra nuovo
EUR 40,61
Convertire valuta
Spese di spedizione: EUR 12,00
Da: Germania a: U.S.A.
Destinazione, tempi e costi