The book is written for graduate students who have read the first book and like to see the proofs which were not given there and/or want to see the full extent of the theory. On the other hand it can be read independently from the first one, only a modest knowledge on Fourier series/tranform is required to understand the examples. This book fills a major gap in the textbook literature, as a full proof of Pontryagin Duality and Plancherel Theorem is hard to come by. It is usually given in books that focus on C*-algebras and thus carry too much technical overload for the reader who only wants these basic results of Harmonic Analysis. Other proofs use the structure theory which carries the reader away in a different direction. Here the authors consider the Banach-algebra approach more elegant and enlighting. They provide a streamlined approach that reaches the main results directly, and they also give the generalizations to the non-Abelian case. Another main pillar of Harmonic analysis is the Poisson Summation Formula. We give its generalization to LCA-groups. The Selberg Trace Formula is considered the generalization of the Poisson Formula to non-abelian groups. The authors give the first textbook approach to this deep and useful formula in full generality. The last two chapters are devoted to examples of applications of the Selberg Trace Formula.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
The present book is intended as a text for a graduate course on abstract harmonic analysis and its applications. The book can be used as a follow up to Anton Deitmer's previous book, A First Course in Harmonic Analysis, or independently, if the students already have a modest knowledge of Fourier Analysis. In this book, among other things, proofs are given of Pontryagin Duality and the Plancherel Theorem for LCA-groups, which were mentioned but not proved in A First Course in Harmonic Analysis. Using Pontryagin duality, the authors also obtain various structure theorems for locally compact abelian groups. The book then proceeds with Harmonic Analysis on non-abelian groups and its applications to theory in number theory and the theory of wavelets.
Knowledge of set theoretic topology, Lebesgue integration, and functional analysis on an introductory level will be required in the body of the book. For the convenience of the reader, all necessary ingredients from these areas have been included in the appendices.
Professor Deitmar is Professor of Mathematics at the University of Tübingen, Germany. He is a former Heisenberg fellow and has taught in the U.K. for some years. Professor Echterhoff is Professor of Mathematics and Computer Science at the University of Münster, Germany.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 3,20 per la spedizione in U.S.A.
Destinazione, tempi e costiEUR 3,41 per la spedizione in U.S.A.
Destinazione, tempi e costiDa: HPB-Red, Dallas, TX, U.S.A.
paperback. Condizione: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Codice articolo S_370905057
Quantità: 1 disponibili
Da: Phatpocket Limited, Waltham Abbey, HERTS, Regno Unito
Condizione: Good. Your purchase helps support Sri Lankan Children's Charity 'The Rainbow Centre'. Ex-library, so some stamps and wear, but in good overall condition. Our donations to The Rainbow Centre have helped provide an education and a safe haven to hundreds of children who live in appalling conditions. Codice articolo Z1-A-013-02525
Quantità: 1 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Feb2215580173421
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 6090204-n
Quantità: 15 disponibili
Da: Grand Eagle Retail, Mason, OH, U.S.A.
Paperback. Condizione: new. Paperback. The tread of this book is formed by two fundamental principles of Harmonic Analysis: the Plancherel Formula and the Poisson S- mation Formula. We ?rst prove both for locally compact abelian groups. For non-abelian groups we discuss the Plancherel Theorem in the general situation for Type I groups. The generalization of the Poisson Summation Formula to non-abelian groups is the S- berg Trace Formula, which we prove for arbitrary groups admitting uniform lattices. As examples for the application of the Trace F- mula we treat the Heisenberg group and the group SL (R). In the 2 2 former case the trace formula yields a decomposition of the L -space of the Heisenberg group modulo a lattice. In the case SL (R), the 2 trace formula is used to derive results like the Weil asymptotic law for hyperbolic surfaces and to provide the analytic continuation of the Selberg zeta function. We ?nally include a chapter on the app- cations of abstract Harmonic Analysis on the theory of wavelets. The present book is a text book for a graduate course on abstract harmonic analysis and its applications. The book can be used as a follow up of the First Course in Harmonic Analysis, [9], or indep- dently, if the students have required a modest knowledge of Fourier Analysis already. In this book, among other things, proofs are given of Pontryagin Duality and the Plancherel Theorem for LCA-groups, which were mentioned but not proved in [9]. The tread of this book is formed by two fundamental principles of Harmonic Analysis: the Plancherel Formula and the Poisson S- mation Formula. The generalization of the Poisson Summation Formula to non-abelian groups is the S- berg Trace Formula, which we prove for arbitrary groups admitting uniform lattices. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9780387854687
Quantità: 1 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 6090204
Quantità: 15 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9780387854687_new
Quantità: Più di 20 disponibili
Da: Chiron Media, Wallingford, Regno Unito
PF. Condizione: New. Codice articolo 6666-IUK-9780387854687
Quantità: 10 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The tread of this book is formed by two fundamental principles of Harmonic Analysis: the Plancherel Formula and the Poisson S- mation Formula. We rst prove both for locally compact abelian groups. For non-abelian groups we discuss the Plancherel Theorem in the general situation for Type I groups. The generalization of the Poisson Summation Formula to non-abelian groups is the S- berg Trace Formula, which we prove for arbitrary groups admitting uniform lattices. As examples for the application of the Trace F- mula we treat the Heisenberg group and the group SL (R). In the 2 2 former case the trace formula yields a decomposition of the L -space of the Heisenberg group modulo a lattice. In the case SL (R), the 2 trace formula is used to derive results like the Weil asymptotic law for hyperbolic surfaces and to provide the analytic continuation of the Selberg zeta function. We nally include a chapter on the app- cations of abstract Harmonic Analysis on the theory of wavelets. The present book is a text book for a graduate course on abstract harmonic analysis and its applications. The book can be used as a follow up of the First Course in Harmonic Analysis, [9], or indep- dently, if the students have required a modest knowledge of Fourier Analysis already. In this book, among other things, proofs are given of Pontryagin Duality and the Plancherel Theorem for LCA-groups, which were mentioned but not proved in [9]. 333 pp. Englisch. Codice articolo 9780387854687
Quantità: 2 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 539. Codice articolo C9780387854687
Quantità: Più di 20 disponibili