Articoli correlati a Galois Theory

Weintraub, Steven H. Galois Theory ISBN 13: 9780387876177

Galois Theory - Brossura

 
9780387876177: Galois Theory

Al momento non sono disponibili copie per questo codice ISBN.

Sinossi

Classical Galois theory is a subject generally acknowledged to be one of the most central and beautiful areas in pure mathematics. This text develops the subject systematically and from the beginning, requiring of the reader only basic facts about polynomials and a good knowledge of linear algebra.  Key topics and features of this book: Approaches Galois theory from the linear algebra point of view, following Artin; Develops the basic concepts and theorems of Galois theory, including algebraic, normal, separable, and Galois extensions, and the Fundamental Theorem of Galois Theory; Presents a number of applications of Galois theory, including symmetric functions, finite fields, cyclotomic fields, algebraic number fields, solvability of equations by radicals, and the impossibility of solution of the three geometric problems of Greek antiquity; Provides excellent motivaton and examples throughout. The book discusses Galois theory in considerable generality, treating fields of characteristic zero and of positive characteristic with consideration of both separable and inseparable extensions, but with a particular emphasis on algebraic extensions of the field of rational numbers. While most of the book is concerned with finite extensions, it concludes with a discussion of the algebraic closure and of infinite Galois extensions. Steven H. Weintraub is Professor and Chair of the Department of Mathematics at Lehigh University. This book, his fifth, grew out of a graduate course he taught at Lehigh. His other books include Algebra: An Approach via Module Theory (with W. A. Adkins).

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Review

From the reviews:

"The text offers the standard material of classical field theory and Galois theory, though in a remarkably original, unconventional and comprehensive manner a ] . the book under review must be seen as a highly welcome and valuable complement to existing textbook literature a ] . It comes with its own features and advantages a ] it surely is a perfect introduction to this evergreen subject. The numerous explaining remarks, hints, examples and applications are particularly commendable a ] just as the outstanding clarity and fullness of the text." (Werner Kleinert, Zentralblatt MATH, Vol. 1089 (15), 2006)

From the Back Cover

The book discusses classical Galois theory in considerable generality, treating fields of characteristic zero and of positive characteristic with consideration of both separable and inseparable extensions, but with a particular emphasis on algebraic extensions of the field of rational numbers. While most of the book is concerned with finite extensions, it discusses algebraic closure and infinite Galois extensions, and concludes with a new chapter on transcendental extensions. Key topics and features of this second edition: - Approaches Galois theory from the linear algebra point of view, following Artin; - Presents a number of applications of Galois theory, including symmetric functions, finite fields, cyclotomic fields, algebraic number fields, solvability of equations by radicals, and the impossibility of solution of the three geometric problems of Greek antiquity. Review from the first edition: "The text offers the standard material of classical field theory and Galois theory, though in a remarkably original, unconventional and comprehensive manner ... . the book under review must be seen as a highly welcome and valuable complement to existing textbook literature ... . It comes with its own features and advantages ... it surely is a perfect introduction to this evergreen subject. The numerous explaining remarks, hints, examples and applications are particularly commendable ... just as the outstanding clarity and fullness of the text." (Zentralblatt MATH, Vol. 1089 (15), 2006) Steven H. Weintraub is a Professor of Mathematics at Lehigh University and the author of seven books. This book grew out of a graduate course he taught at Lehigh. He is also the author of Algebra: An Approach via Module Theory (with W. A. Adkins).

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

(nessuna copia disponibile)

Cerca:



Inserisci un desiderata

Non riesci a trovare il libro che stai cercando? Continueremo a cercarlo per te. Se uno dei nostri librai lo aggiunge ad AbeBooks, ti invieremo una notifica!

Inserisci un desiderata

Altre edizioni note dello stesso titolo

9780387875743: Galois Theory

Edizione in evidenza

ISBN 10:  0387875743 ISBN 13:  9780387875743
Casa editrice: Springer, 2008
Brossura