Articoli correlati a Introduction to Lie Algebras and Representation Theory:...

Introduction to Lie Algebras and Representation Theory: 9 - Brossura

 
9780387900520: Introduction to Lie Algebras and Representation Theory: 9

Sinossi

This book is designed to introduce the reader to the theory of semisimple Lie algebras over an algebraically closed field of characteristic 0, with emphasis on representations. A good knowledge of linear algebra (including eigenvalues, bilinear forms, euclidean spaces, and tensor products of vector spaces) is presupposed, as well as some acquaintance with the methods of abstract algebra. The first four chapters might well be read by a bright undergraduate; however, the remaining three chapters are admittedly a little more demanding. Besides being useful in many parts of mathematics and physics, the theory of semisimple Lie algebras is inherently attractive, combining as it does a certain amount of depth and a satisfying degree of completeness in its basic results. Since Jacobson's book appeared a decade ago, improvements have been made even in the classical parts of the theory. I have tried to incor­ porate some of them here and to provide easier access to the subject for non-specialists. For the specialist, the following features should be noted: (I) The Jordan-Chevalley decomposition of linear transformations is emphasized, with "toral" subalgebras replacing the more traditional Cartan subalgebras in the semisimple case. (2) The conjugacy theorem for Cartan subalgebras is proved (following D. J. Winter and G. D. Mostow) by elementary Lie algebra methods, avoiding the use of algebraic geometry.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Contenuti

I. Basic Concepts.- 1. Definitions and first examples.- 1.1 The notion of Lie algebra.- 1.2 Linear Lie algebras.- 1.3 Lie algebras of derivations.- 1.4 Abstract Lie algebras.- 2. Ideals and homomorphisms.- 2.1 Ideals.- 2.2 Homomorphisms and representations.- 2.3 Automorphisms.- 3. Solvable and nilpotent Lie algebras.- 3.1 Solvability.- 3.2 Nilpotency.- 3.3 Proof of Engel’s Theorem.- II. Semisimple Lie Algebras.- 4. Theorems of Lie and Cartan.- 4.1 Lie’s Theorem.- 4.2 Jordan-Chevalley decomposition.- 4.3 Cartan’s Criterion.- 5. Killing form.- 5.1 Criterion for semisimplicity.- 5.2 Simple ideals of L.- 5.3 Inner derivations.- 5.4 Abstract Jordan decomposition.- 6. Complete reducibility of representations.- 6.1 Modules.- 6.2 Casimir element of a representation.- 6.3 Weyl’s Theorem.- 6.4 Preservation of Jordan decomposition.- 7. Representations of sl (2, F).- 7.1 Weights and maximal vectors.- 7.2 Classification of irreducible modules.- 8. Root space decomposition.- 8.1 Maximal toral subalgebras and roots.- 8.2 Centralizer of H.- 8.3 Orthogonality properties.- 8.4 Integrality properties.- 8.5 Rationality properties Summary.- III. Root Systems.- 9. Axiomatics.- 9.1 Reflections in a euclidean space.- 9.2 Root systems.- 9.3 Examples.- 9.4 Pairs of roots.- 10. Simple roots and Weyl group.- 10.1 Bases and Weyl chambers.- 10.2 Lemmas on simple roots.- 10.3 The Weyl group.- 10.4 Irreducible root systems.- 11. Classification.- 11.1 Cartan matrix of ?.- 11.2 Coxeter graphs and Dynkin diagrams.- 11.3 Irreducible components.- 11.4 Classification theorem.- 12. Construction of root systems and automorphisms.- 12.1 Construction of types A-G.- 12.2 Automorphisms of ?.- 13. Abstract theory of weights.- 13.1 Weights.- 13.2 Dominant weights.- 13.3 The weight ?.- 13.4 Saturated sets of weights.- IV. Isomorphism and Conjugacy Theorems.- 14. Isomorphism theorem.- 14.1 Reduction to the simple case.- 14.2 Isomorphism theorem.- 14.3 Automorphisms.- 15. Cartan subalgebras.- 15.1 Decomposition of L relative to ad x.- 15.2 Engel subalgebras.- 15.3 Cartan subalgebras.- 15.4 Functorial properties.- 16. Conjugacy theorems.- 16.1 The group g (L).- 16.2 Conjugacy of CSA’s (solvable case).- 16.3 Borel subalgebras.- 16.4 Conjugacy of Borel subalgebras.- 16.5 Automorphism groups.- V. Existence Theorem.- 17. Universal enveloping algebras.- 17.1 Tensor and symmetric algebras.- 17.2 Construction of U(L).- 17.3 PBW Theorem and consequences.- 17.4 Proof of PBW Theorem.- 17.5 Free Lie algebras.- 17. Generators and relations.- 17.1 Relations satisfied by L.- 17.2 Consequences of (S1)-(S3).- 17.3 Serre’s Theorem.- 17.4 Application: Existence and uniqueness theorems.- 18. The simple algebras.- 18.1 Criterion for semisimplicity.- 18.2 The classical algebras.- 18.3 The algebra G2.- VI. Representation Theory.- 20. Weights and maximal vectors.- 20.1 Weight spaces.- 20.2 Standard cyclic modules.- 20.3 Existence and uniqueness theorems.- 21. Finite dimensional modules.- 21.1 Necessary condition for finite dimension.- 21.2 Sufficient condition for finite dimension.- 21.3 Weight strings and weight diagrams.- 21.4 Generators and relations for V(?).- 22. Multiplicity formula.- 22.1 A universal Casimir element.- 22.2 Traces on weight spaces.- 22.3 Freudenthal’s formula.- 22.4 Examples.- 22.5 Formal characters.- 23. Characters.- 23.1 Invariant polynomial functions.- 23.2 Standard cyclic modules and characters.- 23.3 Harish-Chandra’s Theorem.- 24. Formulas of Weyl, Kostant, and Steinberg.- 24.1 Some functions on H*.- 24.2 Kostant’s multiplicity formula.- 24.3 Weyl’s formulas.- 24.4 Steinberg’s formula.- VII. Chevalley Algebras and Groups.- 25. Chevalley basis of L.- 25.1 Pairs of roots.- 25.2 Existence of a Chevalley basis.- 25.3 Uniqueness questions.- 25.4 Reduction modulo a prime.- 25.5 Construction of Chevalley groups (adjoint type).- 26. Kostant’s Theorem.- 26.1 A combinatorial lemma.- 26.2 Special case: sl (2, F).- 26.3 Lemmas on commutation.- 26.4 Proof of Kostant’s Theorem.- 27. Admissible lattices.- 27.1 Existence of admissible lattices.- 27.2 Stabilizer of an admissible lattice.- 27.3 Variation of admissible lattice.- 27.4 Passage to an arbitrary field.- 27.5 Survey of related results.- References.- Afterword (1994).- Index of Terminology.- Index of Symbols.

Product Description

Book by Humphreys JE

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

  • EditoreSpringer
  • Data di pubblicazione2013
  • ISBN 10 0387900527
  • ISBN 13 9780387900520
  • RilegaturaCopertina flessibile
  • LinguaInglese
  • Numero di pagine196
  • Contatto del produttorenon disponibile

Compra usato

Condizioni: molto buono
Cover and edges may have some wear...
Visualizza questo articolo

EUR 12,60 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

EUR 9,70 per la spedizione da Germania a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9780387900537: Introduction to Lie Algebras and Representation Theory: 9

Edizione in evidenza

ISBN 10:  0387900535 ISBN 13:  9780387900537
Casa editrice: Springer Verlag, 1994
Rilegato

Risultati della ricerca per Introduction to Lie Algebras and Representation Theory:...

Foto dell'editore

Humphreys, J.E.
Editore: Springer, 1973
ISBN 10: 0387900527 ISBN 13: 9780387900520
Antico o usato Paperback

Da: Books From California, Simi Valley, CA, U.S.A.

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Very Good. Cover and edges may have some wear. Codice articolo mon0003702353

Contatta il venditore

Compra usato

EUR 8,76
Convertire valuta
Spese di spedizione: EUR 12,60
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

J.E. Humphreys
Editore: Springer New York, 1973
ISBN 10: 0387900527 ISBN 13: 9780387900520
Nuovo Kartoniert / Broschiert
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Kartoniert / Broschiert. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Includes supplementary material: sn.pub/extrasThis book is designed to introduce the reader to the theory of semisimple Lie algebras over an algebraically closed field of characteristic 0, with emphasis on representations. A good knowledge of lin. Codice articolo 5911583

Contatta il venditore

Compra nuovo

EUR 50,98
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Humphreys, J. E.
Editore: Springer, 1973
ISBN 10: 0387900527 ISBN 13: 9780387900520
Antico o usato Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: good. May show signs of wear, highlighting, writing, and previous use. This item may be a former library book with typical markings. No guarantee on products that contain supplements Your satisfaction is 100% guaranteed. Twenty-five year bookseller with shipments to over fifty million happy customers. Codice articolo 20179091-5

Contatta il venditore

Compra usato

EUR 46,62
Convertire valuta
Spese di spedizione: EUR 17,36
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

J. E. Humphreys
ISBN 10: 0387900527 ISBN 13: 9780387900520
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is designed to introduce the reader to the theory of semisimple Lie algebras over an algebraically closed field of characteristic 0, with emphasis on representations. A good knowledge of linear algebra (including eigenvalues, bilinear forms, euclidean spaces, and tensor products of vector spaces) is presupposed, as well as some acquaintance with the methods of abstract algebra. The first four chapters might well be read by a bright undergraduate; however, the remaining three chapters are admittedly a little more demanding. Besides being useful in many parts of mathematics and physics, the theory of semisimple Lie algebras is inherently attractive, combining as it does a certain amount of depth and a satisfying degree of completeness in its basic results. Since Jacobson's book appeared a decade ago, improvements have been made even in the classical parts of the theory. I have tried to incor porate some of them here and to provide easier access to the subject for non-specialists. For the specialist, the following features should be noted: (I) The Jordan-Chevalley decomposition of linear transformations is emphasized, with 'toral' subalgebras replacing the more traditional Cartan subalgebras in the semisimple case. (2) The conjugacy theorem for Cartan subalgebras is proved (following D. J. Winter and G. D. Mostow) by elementary Lie algebra methods, avoiding the use of algebraic geometry. 196 pp. Englisch. Codice articolo 9780387900520

Contatta il venditore

Compra nuovo

EUR 56,66
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Humphreys, J.E.
Editore: Springer, 1973
ISBN 10: 0387900527 ISBN 13: 9780387900520
Antico o usato Soft cover

Da: BooXX in Stock, Dekalb, IL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Soft cover. Condizione: As New. pre owned; with all clean pages; no names no writing; the yellow Springer covers easily pick up off colors: slight cover wear! all clean all as new; I ship daily at 0900 CT IL USA; Codice articolo 004029

Contatta il venditore

Compra usato

EUR 34,89
Convertire valuta
Spese di spedizione: EUR 34,75
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

J. E. Humphreys
ISBN 10: 0387900527 ISBN 13: 9780387900520
Nuovo Taschenbuch

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Neuware -This book is designed to introduce the reader to the theory of semisimple Lie algebras over an algebraically closed field of characteristic 0, with emphasis on representations. A good knowledge of linear algebra (including eigenvalues, bilinear forms, euclidean spaces, and tensor products of vector spaces) is presupposed, as well as some acquaintance with the methods of abstract algebra. The first four chapters might well be read by a bright undergraduate; however, the remaining three chapters are admittedly a little more demanding. Besides being useful in many parts of mathematics and physics, the theory of semisimple Lie algebras is inherently attractive, combining as it does a certain amount of depth and a satisfying degree of completeness in its basic results. Since Jacobson's book appeared a decade ago, improvements have been made even in the classical parts of the theory. I have tried to incor porate some of them here and to provide easier access to the subject for non-specialists. For the specialist, the following features should be noted: (I) The Jordan-Chevalley decomposition of linear transformations is emphasized, with 'toral' subalgebras replacing the more traditional Cartan subalgebras in the semisimple case. (2) The conjugacy theorem for Cartan subalgebras is proved (following D. J. Winter and G. D. Mostow) by elementary Lie algebra methods, avoiding the use of algebraic geometry.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 196 pp. Englisch. Codice articolo 9780387900520

Contatta il venditore

Compra nuovo

EUR 56,66
Convertire valuta
Spese di spedizione: EUR 15,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Humphreys, J.E.
Editore: Springer, 1973
ISBN 10: 0387900527 ISBN 13: 9780387900520
Nuovo Brossura

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In English. Codice articolo ria9780387900520_new

Contatta il venditore

Compra nuovo

EUR 63,79
Convertire valuta
Spese di spedizione: EUR 10,52
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Humphreys, J.E.
Editore: Springer, 1973
ISBN 10: 0387900527 ISBN 13: 9780387900520
Antico o usato paperback

Da: Book House in Dinkytown, IOBA, Minneapolis, MN, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

paperback. Condizione: Very Good. Very good- paperback copy (NOT ex-library). Light foxing to top page block. Some sunning to wraps. Else in great shape. Spine is uncreased, binding tight and sturdy; text also very good. Shelfwear is very minor. A solid copy. Ships same or next business day from Dinkytown in Minneapolis, Minnesota. Codice articolo 313131

Contatta il venditore

Compra usato

EUR 44,74
Convertire valuta
Spese di spedizione: EUR 30,40
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

J. E. Humphreys
ISBN 10: 0387900527 ISBN 13: 9780387900520
Nuovo Taschenbuch

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is designed to introduce the reader to the theory of semisimple Lie algebras over an algebraically closed field of characteristic 0, with emphasis on representations. A good knowledge of linear algebra (including eigenvalues, bilinear forms, euclidean spaces, and tensor products of vector spaces) is presupposed, as well as some acquaintance with the methods of abstract algebra. The first four chapters might well be read by a bright undergraduate; however, the remaining three chapters are admittedly a little more demanding. Besides being useful in many parts of mathematics and physics, the theory of semisimple Lie algebras is inherently attractive, combining as it does a certain amount of depth and a satisfying degree of completeness in its basic results. Since Jacobson's book appeared a decade ago, improvements have been made even in the classical parts of the theory. I have tried to incor porate some of them here and to provide easier access to the subject for non-specialists. For the specialist, the following features should be noted: (I) The Jordan-Chevalley decomposition of linear transformations is emphasized, with 'toral' subalgebras replacing the more traditional Cartan subalgebras in the semisimple case. (2) The conjugacy theorem for Cartan subalgebras is proved (following D. J. Winter and G. D. Mostow) by elementary Lie algebra methods, avoiding the use of algebraic geometry. Codice articolo 9780387900520

Contatta il venditore

Compra nuovo

EUR 61,61
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Humphreys, J. E.
Editore: Springer, 1973
ISBN 10: 0387900527 ISBN 13: 9780387900520
Nuovo Brossura

Da: GreatBookPricesUK, Woodford Green, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 20179091-n

Contatta il venditore

Compra nuovo

EUR 59,71
Convertire valuta
Spese di spedizione: EUR 17,56
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Vedi altre 14 copie di questo libro

Vedi tutti i risultati per questo libro