This book is based on lecture notes of the late Professor de Veubeke. The subject is presented at a level suitable for graduate students in engineering, physics, or mathematics. Some exposure to linear algebra, complex analysis, variational calculus, or basic continuum mechanics would be helpful. The first third of the book contains the fundamentals of the theory of elasticity. Kinematics of continuous media, the notions of stress and equilibrium, conservation of energy, 'and the elastic constitutive law are each treated first in a nonlinear context, then specialized to the linear case. The remainder of the book is given to three classic applications of the theory, each supplemented by original re sults based on the use of complex variables. Each one of the three topics - Saint-Venant's theory of prismatic beams, plane deformations, and the bending of plates - is first pre sented and analyzed in general, then rounded out with numerous specific and sometimes novel examples. The following notational conventions are generally in force, except where noted to the contrary: lower case boldface letters denote vectors or triples of Cartesian co ordinates, upper case boldface letters denote 3 x 3 matrices, repeated lower case Latin subscripts are summed over (1,2,3), and non-repeated lower case Latin subscripts are assumed to range over (1,2,3).
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
1. Kinematics of Continuous Media.- 1.1. Material and Spatial Coordinates.- 1.2. Neighborhood Transformations.- 1.3 Composition of Changes of Configuration.- 1.4 Measure of the State of Local Deformation. Green’s and Jaumann’s Strain.- 1.5 Rigid-Body Rotations of a Neighborhood.- 1.6 The Kinematical Decomposition of the Jacobian Matrix.- 1.7 Geometric Interpretation of Infinitesimal Strains.- 1.8 The Eulerian Viewpoint in Kinematics. Almansi’s Strain.- 1.9 Eulerian Measures of Rates of Deformation and Rotation.- 1.10 Temporal, Variation of the Polar Decomposition of the Jacobian Matrix.- 2. Statics and Virtual Work.- 2.1. The Concept of Stress. True Stress.- 2.2. The Piola Stresses.- 2.3. Translational Equilibrium Equations.- 2.4. Rotational Equilibrium Equations.- 2.5. Statics and Virtual Work.- 2.6. Commutativity of the Operators ? and Di.- 2.7 Virtual Work in a Continuous Medium.- 2.8. Statics and Virtual Power for True Stresses.- 2.9. Statics and Virtual Work in Infinitesimal Changes of Configuration.- 3. Conservation of Energy.- 3.1. Constitutive Equations for Piola’s Stresses.- 3.2. The Kirchhoff-Trefftz Stresses.- 3.3 The Constitutive Equations of Geometrically Linear Elasticity.- 4. Cartesian Tensors.- 4.1. Bases and Change of Basis.- 4.2 Tensors.- 4.3 Some Special Tensors.- 4.4 The Vector Product.- 4.5. Structure of Symmetric Cartesian Tensors of Order Two. Principal Axes.- 4.6. Fundamental Invariants and the Deviator.- 4.7. Structure of Skew-Symmetric Cartesian Tensors of the Second Order.- 4.8. Matrix Representation of Tensor Operations.- 5. The Equations of Linear Elasticity.- 5.1. Compatibility of Strains in a Simply Connected Region.- 5.2. Compatibility of Strains in a Multiply Connected Region.- 5.3. Principal Elongations and Fundamental Invariants of Strain.- 5.4. Principal Stresses and Fundamental Invariants of the Stress State.- 5.5. Octahedral Stresses and Strains.- 5.6. Mohr’s Circles.- 5.7. Statics and Virtual Work.- 5.8. Taylor’s Development of the Strain Energy.- 5.9. Infinitesimal Stability.- 5.10. Hadamard’s Condition for Infinitesimal Stability.- 5.11. Isotropy and Anisotropy.- 5.12. Criteria for Elastic Limits.- 5.13. Navier’s Equations.- 5.14. The Beltrami-Michell Equations.- 6. Extension, Bending, and Torsion of Prismatic Beams.- 6.1. Green’s and Stokes’ Formulas.- 6.2. The Centroid.- 6.3. Moments of Inertia.- 6.4. The Semi-Inverse Method of Saint-Venant.- 6.5. Resultants of Stresses on a Cross Section.- 6.6. Calculation of the Transverse Displacements.- 6.7. Equations Governing the Shear Stresses.- 6.8. Calculation of the Longitudinal Displacement.- 6.9. Separation of Solutions.- 6.10. Pure Torsion.- 6.11. The Center of Torsion for a Fully Constrained Section.- 6.12. Bending without Torsion.- 6.13. The Stiffness Relation for the Twist.- 6.14. Total Energy as a Function of the Deformations of the Fibers.- 6.15. Total Energy as a Function of Generalized Forces.- 6.16. The Generalized Constitutive Equations for Bending and Torsion of Beams.- 6.17. One-Dimensional Formulation of Bending and Torsion of Beams.- 6.18. Applications.- A. Stress function for torsion of the elliptic bar.- B. Stress functions for torsion of the circular bar.- C. Stress functions with poles.- D. Torsion of a triangular bar.- E. Torsion of a rectangular bar.- F. Bending of a circular bar.- G. Bending of a circular tube.- H. Bending of a rectangular bar.- 7. Plane Stress and Plane Strain.- 7.1. Lemmas for the Integration of Partial Differential Equations in Complex Form.- 7.2. The Structure of a Biharmonic Function.- 7.3. Structure of the Solution of the Problems of Plane Strain.- 7.4.Structure of the Solution of the Problem of Plane Stress.- 7.5. Generalized Plane Stress.- 7.6. Airy’s Stress Function.- 7.7. Complex Representation of Airy’s Function.- 7.8. Polar Coordinates.- 7.9. Applications in Cartesian Coordinates.- A. The state of hydrostatic stress.- B. Uniform gradient of areal dilation.- C. Pure uniform shear.- D. Linear variation of a normal stress.- E. Simple extension.- F. Pure bending.- G. Shear lag.- H. Bending by shear forces.- I. Saint-Venant’s bending of a rectangular beam with flanges.- J. Transverse loading of a beam with flanges.- 7.10. Applications in Polar Coordinates.- A. Circular aperture with traction-free circumference in a plate in plane stress.- B. Volterra’s dislocation of the circular ring.- C. Bending of beams with constant curvature.- D. The annular ring loaded by shear tractions.- E. The thick tube under pressure.- F. Concentric cylindrical tubes and rings.- G. Force concentrated at the origin in an infinite plate.- 8. Bending of Plates.- 8.1. Basic Hypotheses.- 8.2. Application of the Canonical Variational Principle.- 8.3. The Two-Dimensional Canonical Principle.- 8.4. Further Connections Between the Two- and Three-Dimensional Theories.- 8.5. Other Types of Approximations.- 8.6. Kirchhoff’s Hypothesis.- 8.7. Boundary Conditions in Kirchhoff’s Theory.- 8.8. Kirchhoff’s Variational Principle.- 8.9. Structure of the Solution of the Equations of Plates of Moderate Thickness.- 8.10. The Edge Effect.- 8.11. Torsion of a Plate.- 8.12. Saint-Venant’s Bending of a Plate.- 8.13. Particular Solutions for Transverse Load.- 8.14. Solutions in Polar Coordinates.- 8.15. Axisymmetric Bending.
Book by Fraeijs de Veubeke B M
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 5,00 per la spedizione in Italia
Destinazione, tempi e costiEUR 26,69 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiDa: Biblioteca di Babele, Tarquinia, VT, Italia
Condizione: BUONO USATO. Applied mathematical sciences INGLESE Brossura editoriale in cartoncino flessibile lucido, dalla copertina leggermente annerita. Buonissimo lo stato di conservazione, pagine perfettamente tenute, velate da tonalità seppia come i tagli, ricche di calcoli, grafici e figure in nero, nel testo. Tradotto dal tedesco in inglese da F. A. Ficken. Volume n. XXIX ( 29 ) della collana. Numero pagine 330. Codice articolo NCE4146
Quantità: 1 disponibili
Da: books4less (Versandantiquariat Petra Gros GmbH & Co. KG), Welling, Germania
Broschiert. Condizione: Gut. 330 Seiten; Das hier angebotene Buch stammt aus einer teilaufgelösten Bibliothek und kann die entsprechenden Kennzeichnungen aufweisen (Rückenschild, Instituts-Stempel.); der Buchzustand ist ansonsten ordentlich und dem Alter entsprechend gut. In ENGLISCHER Sprache. Sprache: Englisch Gewicht in Gramm: 585. Codice articolo 2197772
Quantità: 1 disponibili
Da: Better World Books, Mishawaka, IN, U.S.A.
Condizione: Good. Former library book; may include library markings. Used book that is in clean, average condition without any missing pages. Softcover reprint of the original 1st ed. 1979. Codice articolo 5545956-6
Quantità: 1 disponibili
Da: The Book Bin, Salem, OR, U.S.A.
Paperback. Condizione: Very Good. Previous Business Library Book. Sticker on front cover and spine. Stamps on outside page edges and ffep. Binding firm, interior clean and unmarked. Codice articolo CORV-BBC-0K71890
Quantità: 1 disponibili
Da: Buchpark, Trebbin, Germania
Condizione: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher. Codice articolo 4800336/2
Quantità: 4 disponibili
Da: GoldBooks, Denver, CO, U.S.A.
Paperback. Condizione: new. New Copy. Customer Service Guaranteed. Codice articolo 59Z94_42_038790428X
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book is based on lecture notes of the late Professor de Veubeke. The subject is presented at a level suitable for graduate students in engineering, physics, or mathematics. Some exposure to linear algebra, complex analysis, variational calculus, or bas. Codice articolo 5911674
Quantità: Più di 20 disponibili
Da: Toscana Books, AUSTIN, TX, U.S.A.
Paperback. Condizione: new. Excellent Condition.Excels in customer satisfaction, prompt replies, and quality checks. Codice articolo Scanned038790428X
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This book is based on lecture notes of the late Professor de Veubeke. The subject is presented at a level suitable for graduate students in engineering, physics, or mathematics. Some exposure to linear algebra, complex analysis, variational calculus, or basic continuum mechanics would be helpful. The first third of the book contains the fundamentals of the theory of elasticity. Kinematics of continuous media, the notions of stress and equilibrium, conservation of energy, 'and the elastic constitutive law are each treated first in a nonlinear context, then specialized to the linear case. The remainder of the book is given to three classic applications of the theory, each supplemented by original re sults based on the use of complex variables. Each one of the three topics - Saint-Venant's theory of prismatic beams, plane deformations, and the bending of plates - is first pre sented and analyzed in general, then rounded out with numerous specific and sometimes novel examples. The following notational conventions are generally in force, except where noted to the contrary: lower case boldface letters denote vectors or triples of Cartesian co ordinates, upper case boldface letters denote 3 x 3 matrices, repeated lower case Latin subscripts are summed over (1,2,3), and non-repeated lower case Latin subscripts are assumed to range over (1,2,3).Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 348 pp. Englisch. Codice articolo 9780387904283
Quantità: 1 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9780387904283_new
Quantità: Più di 20 disponibili