A stochastic process {X(t): 0 S t < =} with discrete state space S c ~ is said to be stochastically increasing (decreasing) on an interval T if the probabilities Pr{X(t) > i}, i E S, are increasing (decreasing) with t on T.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
1 : Preliminaries.- 1.1 Markov processes.- 1.2 Stochastic monotonicity.- 1.3 Birth-death processes.- 1.4 Some notation and terminology.- 2 : Natural Birth-Death Processes.- 2.1 Some basic properties.- 2.2 The spectral representation.- 2.3 Exponential ergodicity.- 2.4 The moment problem and related topics.- 3 : Dual Birth-Death Processes.- 3.1 Introduction.- 3.2 Duality relations.- 3.3 Ergodic properties.- 4 : Stochastic Monotonicity: General Results.- 4.1 The case ?0 = 0.- 4.2 The case ?0 > 0.- 4.3 Properties of E(t).- 5 : Stochastic Monotonicity: Dependence on the Initial State Distribution.- 5.1 Introduction to the case of a fixed initial state.- 5.2 The transient and null recurrent process.- 5.3 The positive recurrent process.- 5.4 The case of an initial state distribution with finite support.- 6 : The M/M/S Queue Length Process.- 6.1 Introduction.- 6.2 The spectral function.- 6.3 Stochastic monotonicity.- 6.4 Exponential ergodicity.- 7 : A Queueing Model Where Potential Customers are Discouraged by Queue Length.- 7.1 Introduction.- 7.2 The spectral representation.- 7.3 Stochastic monotonicity and exponential ergodicity.- 8 : Linear Growth Birth-Death Processes.- 8.1 Introduction.- 8.2 Stochastic monotonicity.- 9 : The Mean of Birth-Death Processes.- 9.1 Introduction.- 9.2 Representations.- 9.3 Sufficient conditions for finiteness.- 9.4 Behaviour of the mean in special cases.- 10 : The Truncated Birth-Death Process.- 10.1 Introduction.- 10.2 Preliminaries.- 10.3 The sign structure of P’(t).- 10.4 Stochastic monotonicity.- Appendix 1 : Proof of the Sign Variation Diminishing Property of Strictly Totally Positive Matrices.- Appendix 2: On Products of Infinite Matrices.- Appendix 3: On the Sign of Certain Quantities.- Appendix 4: Proof of Theorem 10.2.8.- References.- Notation Index.- Author Index.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 9,00 per la spedizione da Germania a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: NEPO UG, Rüsselsheim am Main, Germania
Condizione: Gut. 128 Seiten ex Library Book Sprache: Englisch Gewicht in Gramm: 198 23,5 x 15,5 x 0,7 cm, Taschenbuch Auflage: Softcover reprint of the original 1st ed. 1981. Codice articolo 355075
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Kartoniert / Broschiert. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. A stochastic process {X(t): 0 S t i}, i E S, are increasing (decreasing) with t on T. Stochastic monotonicity is a basi. Codice articolo 5911696
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -A stochastic process {X(t): 0 S t i}, i E S, are increasing (decreasing) with t on T. Stochastic monotonicity is a basic structural property for process behaviour. It gives rise to meaningful bounds for various quantities such as the moments of the process, and provides the mathematical groundwork for approximation algorithms. Obviously, stochastic monotonicity becomes a more tractable subject for analysis if the processes under consideration are such that stochastic mono tonicity on an inter val 0 t E implies stochastic monotonicity on the entire time axis. DALEY (1968) was the first to discuss a similar property in the context of discrete time Markov chains. Unfortunately, he called this property 'stochastic monotonicity', it is more appropriate, however, to speak of processes with monotone transition operators. KEILSON and KESTER (1977) have demonstrated the prevalence of this phenomenon in discrete and continuous time Markov processes. They (and others) have also given a necessary and sufficient condition for a (temporally homogeneous) Markov process to have monotone transition operators. Whether or not such processes will be stochas tically monotone as defined above, now depends on the initial state distribution. Conditions on this distribution for stochastic mono tonicity on the entire time axis to prevail were given too by KEILSON and KESTER (1977). 124 pp. Englisch. Codice articolo 9780387905471
Quantità: 2 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9780387905471_new
Quantità: Più di 20 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -A stochastic process {X(t): 0 S tSpringer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 124 pp. Englisch. Codice articolo 9780387905471
Quantità: 1 disponibili
Da: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condizione: New. Series: Lecture Notes in Statistics. Num Pages: 124 pages, biography. BIC Classification: PBT. Category: (G) General (US: Trade). Dimension: 235 x 155 x 7. Weight in Grams: 201. . 1981. Softcover reprint of the original 1st ed. 1981. Paperback. . . . . Codice articolo V9780387905471
Quantità: 15 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 20179133-n
Quantità: 15 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - A stochastic process {X(t): 0 S t i}, i E S, are increasing (decreasing) with t on T. Stochastic monotonicity is a basic structural property for process behaviour. It gives rise to meaningful bounds for various quantities such as the moments of the process, and provides the mathematical groundwork for approximation algorithms. Obviously, stochastic monotonicity becomes a more tractable subject for analysis if the processes under consideration are such that stochastic mono tonicity on an inter val 0 t E implies stochastic monotonicity on the entire time axis. DALEY (1968) was the first to discuss a similar property in the context of discrete time Markov chains. Unfortunately, he called this property 'stochastic monotonicity', it is more appropriate, however, to speak of processes with monotone transition operators. KEILSON and KESTER (1977) have demonstrated the prevalence of this phenomenon in discrete and continuous time Markov processes. They (and others) have also given a necessary and sufficient condition for a (temporally homogeneous) Markov process to have monotone transition operators. Whether or not such processes will be stochas tically monotone as defined above, now depends on the initial state distribution. Conditions on this distribution for stochastic mono tonicity on the entire time axis to prevail were given too by KEILSON and KESTER (1977). Codice articolo 9780387905471
Quantità: 1 disponibili
Da: Best Price, Torrance, CA, U.S.A.
Condizione: New. SUPER FAST SHIPPING. Codice articolo 9780387905471
Quantità: 2 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 216. Codice articolo C9780387905471
Quantità: Più di 20 disponibili