Bayesian Computation with R (Use R!)

Valutazione media 3,38
( su 29 valutazioni fornite da Goodreads )
 
9780387922973: Bayesian Computation with R (Use R!)

There has been dramatic growth in the development and application of Bayesian inference in statistics. Berger (2000) documents the increase in Bayesian activity by the number of published research articles, the number of books,andtheextensivenumberofapplicationsofBayesianarticlesinapplied disciplines such as science and engineering. One reason for the dramatic growth in Bayesian modeling is the availab- ity of computational algorithms to compute the range of integrals that are necessary in a Bayesian posterior analysis. Due to the speed of modern c- puters, it is now possible to use the Bayesian paradigm to ?t very complex models that cannot be ?t by alternative frequentist methods. To ?t Bayesian models, one needs a statistical computing environment. This environment should be such that one can: write short scripts to de?ne a Bayesian model use or write functions to summarize a posterior distribution use functions to simulate from the posterior distribution construct graphs to illustrate the posterior inference An environment that meets these requirements is the R system. R provides a wide range of functions for data manipulation, calculation, and graphical d- plays. Moreover, it includes a well-developed, simple programming language that users can extend by adding new functions. Many such extensions of the language in the form of packages are easily downloadable from the Comp- hensive R Archive Network (CRAN).

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

From the Back Cover:

There has been a dramatic growth in the development and application of Bayesian inferential methods. Some of this growth is due to the availability of powerful simulation-based algorithms to summarize posterior distributions. There has been also a growing interest in the use of the system R for statistical analyses. R's open source nature, free availability, and large number of contributor packages have made R the software of choice for many statisticians in education and industry.

Bayesian Computation with R introduces Bayesian modeling by the use of computation using the R language. The early chapters present the basic tenets of Bayesian thinking by use of familiar one and two-parameter inferential problems. Bayesian computational methods such as Laplace's method, rejection sampling, and the SIR algorithm are illustrated in the context of a random effects model. The construction and implementation of Markov Chain Monte Carlo (MCMC) methods is introduced. These simulation-based algorithms are implemented for a variety of Bayesian applications such as normal and binary response regression, hierarchical modeling, order-restricted inference, and robust modeling. Algorithms written in R are used to develop Bayesian tests and assess Bayesian models by use of the posterior predictive distribution. The use of R to interface with WinBUGS, a popular MCMC computing language, is described with several illustrative examples.

This book is a suitable companion book for an introductory course on Bayesian methods and is valuable to the statistical practitioner who wishes to learn more about the R language and Bayesian methodology. The LearnBayes package, written by the author and available from the CRAN website, contains all of the R functions described in the book.

The second edition contains several new topics such as the use of mixtures of conjugate priors and the use of Zellner’s g priors to choose between models in linear regression. There are more illustrations of the construction of informative prior distributions, such as the use of conditional means priors and multivariate normal priors in binary regressions. The new edition contains changes in the R code illustrations according to the latest edition of the LearnBayes package.

Jim Albert is Professor of Statistics at Bowling Green State University. He is Fellow of the American Statistical Association and is past editor of The American Statistician. His books include Ordinal Data Modeling (with Val Johnson), Workshop Statistics: Discovery with Data, A Bayesian Approach (with Allan Rossman), and Bayesian Computation using Minitab.

Review:

new text

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

I migliori risultati di ricerca su AbeBooks

1.

Albert, Jim
Editore: Springer
ISBN 10: 0387922970 ISBN 13: 9780387922973
Nuovi Quantità: 1
Da
textbook_rebellion
(Troy, MI, U.S.A.)
Valutazione libreria
[?]

Descrizione libro Springer. Condizione libro: New. 0387922970 Choose Expedited shipping for fastest delivery. Satisfaction Guaranteed. Orders ship within 1-2 business days w/ free USPS tracking. Codice libro della libreria Z0387922970ZN

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 35,95
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 4,18
In U.S.A.
Destinazione, tempi e costi

2.

Jim Albert
Editore: Springer-Verlag New York Inc., United States (2009)
ISBN 10: 0387922970 ISBN 13: 9780387922973
Nuovi Paperback Quantità: 1
Da
The Book Depository
(London, Regno Unito)
Valutazione libreria
[?]

Descrizione libro Springer-Verlag New York Inc., United States, 2009. Paperback. Condizione libro: New. 2nd ed. 2009. Language: English . Brand New Book. There has been dramatic growth in the development and application of Bayesian inference in statistics. Berger (2000) documents the increase in Bayesian activity by the number of published research articles, the number of books,andtheextensivenumberofapplicationsofBayesianarticlesinapplied disciplines such as science and engineering. One reason for the dramatic growth in Bayesian modeling is the availab- ity of computational algorithms to compute the range of integrals that are necessary in a Bayesian posterior analysis. Due to the speed of modern c- puters, it is now possible to use the Bayesian paradigm to ?t very complex models that cannot be ?t by alternative frequentist methods. To ?t Bayesian models, one needs a statistical computing environment. This environment should be such that one can: write short scripts to de?ne a Bayesian model use or write functions to summarize a posterior distribution use functions to simulate from the posterior distribution construct graphs to illustrate the posterior inference An environment that meets these requirements is the R system. R provides a wide range of functions for data manipulation, calculation, and graphical d- plays. Moreover, it includes a well-developed, simple programming language that users can extend by adding new functions. Many such extensions of the language in the form of packages are easily downloadable from the Comp- hensive R Archive Network (CRAN). Codice libro della libreria AAU9780387922973

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 41,72
Convertire valuta

Aggiungere al carrello

Spese di spedizione: GRATIS
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

3.

Jim Albert
Editore: Springer-Verlag New York Inc., United States (2009)
ISBN 10: 0387922970 ISBN 13: 9780387922973
Nuovi Paperback Quantità: 1
Da
The Book Depository US
(London, Regno Unito)
Valutazione libreria
[?]

Descrizione libro Springer-Verlag New York Inc., United States, 2009. Paperback. Condizione libro: New. 2nd ed. 2009. Language: English . Brand New Book. There has been dramatic growth in the development and application of Bayesian inference in statistics. Berger (2000) documents the increase in Bayesian activity by the number of published research articles, the number of books,andtheextensivenumberofapplicationsofBayesianarticlesinapplied disciplines such as science and engineering. One reason for the dramatic growth in Bayesian modeling is the availab- ity of computational algorithms to compute the range of integrals that are necessary in a Bayesian posterior analysis. Due to the speed of modern c- puters, it is now possible to use the Bayesian paradigm to ?t very complex models that cannot be ?t by alternative frequentist methods. To ?t Bayesian models, one needs a statistical computing environment. This environment should be such that one can: write short scripts to de?ne a Bayesian model use or write functions to summarize a posterior distribution use functions to simulate from the posterior distribution construct graphs to illustrate the posterior inference An environment that meets these requirements is the R system. R provides a wide range of functions for data manipulation, calculation, and graphical d- plays. Moreover, it includes a well-developed, simple programming language that users can extend by adding new functions. Many such extensions of the language in the form of packages are easily downloadable from the Comp- hensive R Archive Network (CRAN). Codice libro della libreria AAU9780387922973

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 41,96
Convertire valuta

Aggiungere al carrello

Spese di spedizione: GRATIS
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

4.

Jim Albert
Editore: Springer New York 2009-05-15, New York (2009)
ISBN 10: 0387922970 ISBN 13: 9780387922973
Nuovi paperback Quantità: > 20
Da
Blackwell's
(Oxford, OX, Regno Unito)
Valutazione libreria
[?]

Descrizione libro Springer New York 2009-05-15, New York, 2009. paperback. Condizione libro: New. Codice libro della libreria 9780387922973

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 41,32
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 6,78
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

5.

Albert, Jim
Editore: Springer-Verlag New York Inc. (2009)
ISBN 10: 0387922970 ISBN 13: 9780387922973
Nuovi Brossura Quantità: 3
Valutazione libreria
[?]

Descrizione libro Springer-Verlag New York Inc., 2009. Condizione libro: New. 2009. 2nd ed. 2009. Paperback. There has been a dramatic growth in the development and application of Bayesian inferential methods. This book introduces Bayesian modeling by the use of computation using the R language. The new edition contains changes in the R code illustrations. Series: Use R! Num Pages: 300 pages, biography. BIC Classification: PBKS; PBT; PBU; PBV; UGK. Category: (P) Professional & Vocational. Dimension: 236 x 155 x 3. Weight in Grams: 436. . . . . . . Codice libro della libreria V9780387922973

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 48,19
Convertire valuta

Aggiungere al carrello

Spese di spedizione: GRATIS
Da: Irlanda a: U.S.A.
Destinazione, tempi e costi

6.

Albert, Jim
Editore: Springer-Verlag New York Inc. (2009)
ISBN 10: 0387922970 ISBN 13: 9780387922973
Nuovi Quantità: > 20
Print on Demand
Da
Pbshop
(Wood Dale, IL, U.S.A.)
Valutazione libreria
[?]

Descrizione libro Springer-Verlag New York Inc., 2009. PAP. Condizione libro: New. New Book. Shipped from US within 10 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice libro della libreria IQ-9780387922973

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 45,23
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 3,34
In U.S.A.
Destinazione, tempi e costi

7.

Jim Albert
Editore: Springer
ISBN 10: 0387922970 ISBN 13: 9780387922973
Nuovi Paperback Quantità: 5
Da
THE SAINT BOOKSTORE
(Southport, Regno Unito)
Valutazione libreria
[?]

Descrizione libro Springer. Paperback. Condizione libro: New. New copy - Usually dispatched within 2 working days. Codice libro della libreria B9780387922973

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 41,98
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 7,84
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

8.

Jim Albert
Editore: Springer (2009)
ISBN 10: 0387922970 ISBN 13: 9780387922973
Nuovi Brossura Quantità: 1
Da
Valutazione libreria
[?]

Descrizione libro Springer, 2009. Condizione libro: New. Codice libro della libreria UA9780387922973

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 48,10
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 2,99
Da: Germania a: U.S.A.
Destinazione, tempi e costi

9.

Albert, Jim
Editore: Springer-Verlag New York Inc.
ISBN 10: 0387922970 ISBN 13: 9780387922973
Nuovi Brossura Quantità: 3
Da
Kennys Bookstore
(Olney, MD, U.S.A.)
Valutazione libreria
[?]

Descrizione libro Springer-Verlag New York Inc. Condizione libro: New. 2009. 2nd ed. 2009. Paperback. There has been a dramatic growth in the development and application of Bayesian inferential methods. This book introduces Bayesian modeling by the use of computation using the R language. The new edition contains changes in the R code illustrations. Series: Use R! Num Pages: 300 pages, biography. BIC Classification: PBKS; PBT; PBU; PBV; UGK. Category: (P) Professional & Vocational. Dimension: 236 x 155 x 3. Weight in Grams: 436. . . . . . Books ship from the US and Ireland. Codice libro della libreria V9780387922973

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 51,55
Convertire valuta

Aggiungere al carrello

Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

10.

Albert, Jim
Editore: Springer-Verlag New York Inc. (2009)
ISBN 10: 0387922970 ISBN 13: 9780387922973
Nuovi Quantità: 3
Da
Books2Anywhere
(Fairford, GLOS, Regno Unito)
Valutazione libreria
[?]

Descrizione libro Springer-Verlag New York Inc., 2009. PAP. Condizione libro: New. New Book. Shipped from UK in 4 to 14 days. Established seller since 2000. Codice libro della libreria BB-9780387922973

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 42,52
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 10,17
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Vedi altre copie di questo libro

Vedi tutti i risultati per questo libro