# Applications of Lie Groups to Differential Equations

## Olver, Peter J.

Valutazione media 4,42
( su 12 valutazioni fornite da GoodReads )

Symmetry methods have long been recognized to be of great importance for the study of the differential equations arising in mathematics, physics, engineering, and many other disciplines. The purpose of this book is to provide a solid introduction to those applications of Lie groups to differential equations which have proved to be useful in practice, including determination of symmetry groups, integration of orginary differential equations, construction of group-invariant solutions to partial differential equations, symmetries and conservation laws, generalized symmetries, and symmetry methods in Hamiltonian systems. The computational methods are presented so that grauate students and researchers in other fields can readily learn to use them. Following an exposition of the applications, the book develops the underlying theory. Many of the topics are presented in a novel way, with an emphasis on explicit examples and computations. Further examples, as well as new theoretical developments, appear in the exercises at the end of each chapter. This second edition contains a new section on formal symmetries and the calculus of pseudo-differential operators, simpler proofs of some theorems, new exercises, and a substantially updated bibiography.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Contenuti:

1 Introduction to Lie Groups.- 1.1. Manifolds.- Change of Coordinates.- Maps Between Manifolds.- The Maximal Rank Condition.- Submanifolds.- Regular Submanifolds.- Implicit Submanifolds.- Curves and Connectedness.- 1.2. Lie Groups.- Lie Subgroups.- Local Lie Groups.- Local Transformation Groups.- Orbits.- 1.3. Vector Fields.- Flows.- Action on Functions.- Differentials.- Lie Brackets.- Tangent Spaces and Vectors Fields on Submanifolds.- Frobenius’ Theorem.- 1.4. Lie Algebras.- One-Parameter Subgroups.- Subalgebras.- The Exponential Map.- Lie Algebras of Local Lie Groups.- Structure Constants.- Commutator Tables.- Infinitesimal Group Actions.- 1.5. Differential Forms.- Pull-Back and Change of Coordinates.- Interior Products.- The Differential.- The de Rham Complex.- Lie Derivatives.- Homotopy Operators.- Integration and Stokes’ Theorem.- Notes.- Exercises.- 2 Symmetry Groups of Differential Equations.- 2.1. Symmetries of Algebraic Equations.- Invariant Subsets.- Invariant Functions.- Infinitesimal Invariance.- Local Invariance.- Invariants and Functional Dependence.- Methods for Constructing Invariants.- 2.2. Groups and Differential Equations.- 2.3. Prolongation.- Systems of Differential Equations.- Prolongation of Group Actions.- Invariance of Differential Equations.- Prolongation of Vector Fields.- Infinitesimal Invariance.- The Prolongation Formula.- Total Derivatives.- The General Prolongation Formula.- Properties of Prolonged Vector Fields.- Characteristics of Symmetries.- 2.4. Calculation of Symmetry Groups.- 2.5. Integration of Ordinary Differential Equations.- First Order Equations.- Higher Order Equations.- Differential Invariants.- Multi-parameter Symmetry Groups.- Solvable Groups.- Systems of Ordinary Differential Equations.- 2.6. Nondegeneracy Conditions for Differential Equations.- Local Solvability.- In variance Criteria.- The Cauchy—Kovalevskaya Theorem.- Characteristics.- Normal Systems.- Prolongation of Differential Equations.- Notes.- Exercises.- 3 Group-Invariant Solutions.- 3.1. Construction of Group-Invariant Solutions.- 3.2. Examples of Group-Invariant Solutions.- 3.3. Classification of Group-Invariant Solutions.- The Adjoint Representation.- Classification of Subgroups and Subalgebras.- Classification of Group-Invariant Solutions.- 3.4. Quotient Manifolds.- Dimensional Analysis.- 3.5. Group-Invariant Prolongations and Reduction.- Extended Jet Bundles.- Differential Equations.- Group Actions.- The Invariant Jet Space.- Connection with the Quotient Manifold.- The Reduced Equation.- Local Coordinates.- Notes.- Exercises.- 4 Symmetry Groups and Conservation Laws.- 4.1. The Calculus of Variations.- The Variational Derivative.- Null Lagrangians and Divergences.- Invariance of the Euler Operator.- 4.2. Variational Symmetries.- Infinitesimal Criterion of Invariance.- Symmetries of the Euler—Lagrange Equations.- Reduction of Order.- 4.3. Conservation Laws.- Trivial Conservation Laws.- Characteristics of Conservation Laws.- 4.4. Noether’s Theorem.- Divergence Symmetries.- Notes.- Exercises.- 5 Generalized Symmetries.- 5.1. Generalized Symmetries of Differential Equations.- Differential Functions.- Generalized Vector Fields.- Evolutionary Vector Fields.- Equivalence and Trivial Symmetries.- Computation of Generalized Symmetries.- Group Transformations.- Symmetries and Prolongations.- The Lie Bracket.- Evolution Equations.- 5.2. Récursion Operators, Master Symmetries and Formal Symmetries.- Frechet Derivatives.- Lie Derivatives of Differential Operators.- Criteria for Recursion Operators.- The Korteweg—de Vries Equation.- Master Symmetries.- Pseudo-differential Operators.- Formal Symmetries.- 5.3. Generalized Symmetries and Conservation Laws.- Adjoints of Differential Operators.- Characteristics of Conservation Laws.- Variational Symmetries.- Group Transformations.- Noether’s Theorem.- Self-adjoint Linear Systems.- Action of Symmetries on Conservation Laws.- Abnormal Systems and Noether’s Second Theorem.- Formal Symmetries and Conservation Laws.- 5.4. The Variational Complex.- The D-Complex.- Vertical Forms.- Total Derivatives of Vertical Forms.- Functionals and Functional Forms.- The Variational Differential.- Higher Euler Operators.- The Total Homotopy Operator.- Notes.- Exercises.- 6 Finite-Dimensional Hamiltonian Systems.- 6.1. Poisson Brackets.- Hamiltonian Vector Fields.- The Structure Functions.- The Lie-Poisson Structure.- 6.2. Symplectic Structures and Foliations.- The Correspondence Between One-Forms and Vector Fields.- Rank of a Poisson Structure.- Symplectic Manifolds.- Maps Between Poisson Manifolds.- Poisson Submanifolds.- Darboux’ Theorem.- The Co-adjoint Representation.- 6.3. Symmetries, First Integrals and Reduction of Order.- First Integrals.- Hamiltonian Symmetry Groups.- Reduction of Order in Hamiltonian Systems.- Reduction Using Multi-parameter Groups.- Hamiltonian Transformation Groups.- The Momentum Map.- Notes.- Exercises.- 7 Hamiltonian Methods for Evolution Equations.- 7.1. Poisson Brackets.- The Jacobi Identity.- Functional Multi-vectors.- 7.2. Symmetries and Conservation Laws.- Distinguished Functionals.- Lie Brackets.- Conservation Laws.- 7.3. Bi-Hamiltonian Systems.- Recursion Operators.- Notes.- Exercises.- References.- Symbol Index.- Author Index.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra nuovo Guarda l'articolo
EUR 112,57

Spese di spedizione: EUR 18,40
Da: U.S.A. a: Italia

Destinazione, tempi e costi

Aggiungere al carrello

## 1.Applications of Lie Groups to Differential Equations (Graduate Texts in Mathematics)

Editore: Springer (1998)
ISBN 10: 0387940073 ISBN 13: 9780387940076
Nuovi Rilegato Quantità: 2
Da
Murray Media
(North Miami Beach, FL, U.S.A.)
Valutazione libreria

Descrizione libro Springer, 1998. Hardcover. Condizione libro: New. Codice libro della libreria P110387940073

Compra nuovo
EUR 112,57
Convertire valuta
Spese di spedizione: EUR 18,40
Da: U.S.A. a: Italia
Destinazione, tempi e costi

## 2.Applications of Lie Groups to Differential Equations (Graduate Texts in Mathematics)

Editore: Springer
ISBN 10: 0387940073 ISBN 13: 9780387940076
Nuovi Rilegato Quantità: 1
Da
Cloud 9 Books
(West Palm Beach, FL, U.S.A.)
Valutazione libreria

Descrizione libro Springer. Hardcover. Condizione libro: New. 0387940073 New Condition. Codice libro della libreria NEW6.0183871

Compra nuovo
EUR 118,49
Convertire valuta
Spese di spedizione: EUR 36,81
Da: U.S.A. a: Italia
Destinazione, tempi e costi

## 3.Applications of Lie Groups to Differential Equations (Graduate Texts in Mathematics)

Editore: Springer (2000)
ISBN 10: 0387940073 ISBN 13: 9780387940076
Nuovi Rilegato Quantità: 1
Print on Demand
Da
Ergodebooks
(RICHMOND, TX, U.S.A.)
Valutazione libreria

Descrizione libro Springer, 2000. Hardcover. Condizione libro: New. 2nd. This item is printed on demand. Codice libro della libreria DADAX0387940073

Compra nuovo
EUR 150,78
Convertire valuta
Spese di spedizione: EUR 12,89
Da: U.S.A. a: Italia
Destinazione, tempi e costi

## 4.Applications of Lie Groups to Differential Equations (Graduate Texts in Mathematics)

Editore: Springer (1998)
ISBN 10: 0387940073 ISBN 13: 9780387940076
Nuovi Rilegato Quantità: 1
Da
Irish Booksellers
(Rumford, ME, U.S.A.)
Valutazione libreria

Descrizione libro Springer, 1998. Hardcover. Condizione libro: New. book. Codice libro della libreria 0387940073

Compra nuovo
EUR 160,93
Convertire valuta
Spese di spedizione: EUR 11,05
Da: U.S.A. a: Italia
Destinazione, tempi e costi