The author reviews the essentials of logistic regression and discusses the variety of mechanisms which might cause missing values while the rest of the book covers the methods which may be used to deal with missing values and their effectiveness.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
1. Introduction.- I: Logistic Regression with Two Categorical Covariates.- 2. The complete data case.- 3. Missing value mechanisms.- 4. Estimation methods.- 4.1 Maximum Likelihood (ML) Estimatio.- 4.2 Pseudo Maximum Likelihood (PML) Estimatio.- 4.3 The Filling metho.- 4.4 Complete Case Analysi.- 4.5 Additional Categor.- 4.6 Probability Imputatio.- 4.7 Omission of Covariat.- 5. Quantitative comparisons: Asymptotic results.- 5.1 Asymptotic relative efficiency: ML Estimation vs. PML Estimatio.- 5.2 Asymptotic relative efficiency: ML Estimation vs. Fillin.- 5.3 Asymptotic relative efficiency: PML Estimation vs. Fillin.- 5.4 Asymptotic relative efficiency: ML Estimation vs. Complete Case Analysi.- 5.5 Asymptotic relative efficiency: ML Estimation for complete data vs. ML Estimation for incomplete dat.- 5.6 Asymptotic relative efficiency: ML Estimation for complete data vs. Complete Case Analysi.- 5.7 Asymptotic relative efficiency: A summary of result.- 5.8 Asymptotic bias: Comparison of Probability Imputation, Additional Category and Omission of Covariat.- 5.9 Asymptotic bias: Evaluation of Conditional Probability Imputatio.- 5.10 Evaluating the underestimation of variance of Conditional Probability Imputatio.- 5.11 The importance of the variance correction of the Filling metho.- 6. Quantitative comparisons: Results from finite sample size simulation studies.- 6.1 Finite behavior of ML Estimation, PML Estimation, Filling and Complete Case Analysi.- 6.2 Power comparison.- 6.3 Evaluation of Conditional Probability Imputatio.- 7. Examples.- 7.1 Illustrating artificial example.- 7.2 An example with a real data se.- 8. Sensitivity analysis.- II: Generalizations.- 9. General regression models with missing values in one of two covariates.- 9.1 ML Estimatio.- 9.2 Semiparametric ML Estimatio.- 9.3 Estimation of the Score Functio.- 9.4 Complete Case Analysi.- 9.5 Mean Imputation and Additional Categor.- 9.6 The Cox proportional hazards mode.- 10. Generalizations for more than two covariates.- 10.1 One covariate with missing value.- 10.2 Missing values in more than one covariat.- 11. Missing values and subsampling.- 11.1 Two stage design.- 11.2 Surrogate covariates and validation samplin.- 11.3 Subsampling of the nonresponder.- 11.4 (Sub-)sampling of additional variable.- 12. Further Examples.- 12.1 Example 1: Risk factors for subsequent contralateral breast cance.- 12.2 Example 2: A study on the role of DNA content for the prognosis of ovarian cancer patient.- 13. Discussion.- 13.1 Statistical inference if the MAR assumption is satisfie.- 13.2 Statistical inference if the MAR assumption is questionabl.- 13.3 Topics of future researc.- 13.4 Final remar.- Appendices.- A. 1 ML Estimation in the presence of missing values A.2 The EM algorithm.- B. 1 Explicit representation of the score function of ML Estimation and the information matrix in the complete data case.- B. 2 Explicit representation of the score function of ML Estimation and the information matrix.- B. 3 Explicit representation of the quantities used for the asymptotic variance of the PML estimates.- B. 4 Explicit representation of the quantities used for the asymptotic variance of the estimates of the Filling method.- References.- Notation Index.
Book by Vach Werner
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 9,00 per la spedizione da Germania a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: NEPO UG, Rüsselsheim am Main, Germania
Condizione: Sehr gut. 158 Seiten nice ex library book Sprache: Englisch Gewicht in Gramm: 356 21,4 x 14,9 x 1,9 cm, Taschenbuch Auflage: Softcover reprint of the original 1st ed. 1994. Codice articolo 344220
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Kartoniert / Broschiert. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. In many areas of science a basic task is to assess the influence of several factors on a quantity of interest. If this quantity is binary logistic, regression models provide a powerful tool for this purpose. This monograph presents an account of the use of . Codice articolo 5911942
Quantità: Più di 20 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -In many areas of science a basic task is to assess the influence of several factors on a quantity of interest. If this quantity is binary logistic, regression models provide a powerful tool for this purpose. This monograph presents an account of the use of logistic regression in the case where missing values in the variables prevent the use of standard techniques. Such situations occur frequently across a wide range of statistical applications.The emphasis of this book is on methods related to the classical maximum likelihood principle. The author reviews the essentials of logistic regression and discusses the variety of mechanisms which might cause missing values while the rest of the book covers the methods which may be used to deal with missing values and their effectiveness. Researchers across a range of disciplines and graduate students in statistics and biostatistics will find this a readable account of this.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 156 pp. Englisch. Codice articolo 9780387942636
Quantità: 1 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9780387942636_new
Quantità: Più di 20 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - In many areas of science a basic task is to assess the influence of several factors on a quantity of interest. If this quantity is binary logistic, regression models provide a powerful tool for this purpose. This monograph presents an account of the use of logistic regression in the case where missing values in the variables prevent the use of standard techniques. Such situations occur frequently across a wide range of statistical applications. The emphasis of this book is on methods related to the classical maximum likelihood principle. The author reviews the essentials of logistic regression and discusses the variety of mechanisms which might cause missing values while the rest of the book covers the methods which may be used to deal with missing values and their effectiveness. Researchers across a range of disciplines and graduate students in statistics and biostatistics will find this a readable account of this. Codice articolo 9780387942636
Quantità: 1 disponibili
Da: Best Price, Torrance, CA, U.S.A.
Condizione: New. SUPER FAST SHIPPING. Codice articolo 9780387942636
Quantità: 2 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 259. Codice articolo C9780387942636
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 156. Codice articolo 263889299
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 156 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Codice articolo 5039948
Quantità: 4 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 1st edition. 148 pages. 9.25x6.25x0.50 inches. In Stock. Codice articolo x-0387942637
Quantità: 2 disponibili