This volume contains the expanded lectures given at a conference on number theory and arithmetic geometry held at Boston University. It introduces and explains the many ideas and techniques used by Wiles, and to explain how his result can be combined with Ribets theorem and ideas of Frey and Serre to prove Fermats Last Theorem. The book begins with an overview of the complete proof, followed by several introductory chapters surveying the basic theory of elliptic curves, modular functions and curves, Galois cohomology, and finite group schemes. Representation theory, which lies at the core of the proof, is dealt with in a chapter on automorphic representations and the Langlands-Tunnell theorem, and this is followed by in-depth discussions of Serres conjectures, Galois deformations, universal deformation rings, Hecke algebras, and complete intersections. The book concludes by looking both forward and backward, reflecting on the history of the problem, while placing Wiles'theorem into a more general Diophantine context suggesting future applications. Students and professional mathematicians alike will find this an indispensable resource.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
"The story of Fermat's last theorem (FLT) and its resolution is now well known. It is now common knowledge that Frey had the original idea linking the modularity of elliptic curves and FLT, that Serre refined this intuition by formulating precise conjectures, that Ribet proved a part of Serre's conjectures, which enabled him to establish that modularity of semistable elliptic curves implies FLT, and that finally Wiles proved the modularity of semistable elliptic curves.
The purpose of the book under review is to highlight and amplify these developments. As such, the book is indispensable to any student wanting to learn the finer details of the proof or any researcher wanting to extend the subject in a higher direction. Indeed, the subject is already expanding with the recent researches of Conrad, Darmon, Diamond, Skinner and others. ...
FLT deserves a special place in the history of civilization. Because of its simplicity, it has tantalized amateurs and professionals alike, and its remarkable fecundity has led to the development of large areas of mathematics such as, in the last century, algebraic number theory, ring theory, algebraic geometry, and in this century, the theory of elliptic curves, representation theory, Iwasawa theory, formal groups, finite flat group schemes and deformation theory of Galois representations, to mention a few. It is as if some supermind planned it all and over the centuries had been developing diverse streams of thought only to have them fuse in a spectacular synthesis to resolve FLT. No single brain can claim expertise in all of the ideas that have gone into this "marvelous proof". In this age of specialization, where "each one of us knows more and more about less and less", it is vital for us to have an overview of the masterpiece such as the one provided by this book." (M. Ram Murty, Mathematical Reviews)
Preface.- Contributors.- Schedule of Lectures.- Introduction.- An Overview of the Proof of Fermat's Last Theorem.- A Survey of the Arithmetic Theory of Elliptic Curves.- Modular Curves, Hecke Correspondences, and L-Functions.- Galois Cohomology.- Finite Flat Group Schemes.- Three Lectures on the Modularity of PE.3 and the Langlands Reciprocity Conjecture.- Serre's Conjectures.- An Introduction to the Deformation Theory of Galois Representations.- Explicit Construction of Universal Deformation Rings.- Hecke Algebras and the Gorenstein Property.- Criteria for Complete Intersections.- l-adic Modular Deformations and Wiles's "Main Conjecture".- The Flat Deformation Functor.- Hecke Rings and Universal Deformation Rings.- Explicit Families of Elliptic Curves with Prescribed Mod N Representations.- Modularity of Mod 5 Representations.- An Extension of Wiles' Results.- Appendix to Chapter 17: Classification of PE.1 by the j Invariant of E.- Class Field Theory and the First Case of Fermat's Last Theorem.- Remarks on the History of Fermat's Last Theorem 1844 to 1984.- On Ternary Equations of Fermat Type and Relations with Elliptic Curves.- Wiles' Theorem and the Arithmetic of Elliptic Curves.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 14,99 per la spedizione da Germania a Italia
Destinazione, tempi e costiEUR 10,35 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiDa: Antiquariat Jochen Mohr -Books and Mohr-, Oberthal, Germania
hardcover. Condizione: Sehr gut. 2., corr. Printing. 582 Seiten This volume contains expanded versions of lectures given at an instructional conference on number theory and arithmetic geometry held August 9 through 18, 1995 at Boston University. The purpose of the conference, and of this book, is to introduce and explain the many ideas and techniques used by Wiles in his proof that every (semi- stable) elliptic curve over Q is modular, and to explain how Wiles' result can be combined with Ribet's theorem and ideas of Frey and Serre to show, at long last, that Fermat's Last Theorem is true. Contributors to this volume include: B. Conrad, H. Darmon, E. de Shalit, B. de Smit, F. Diamond, S.J. Edixhoven, G. Frey, S. Gelbart, K. Kramer, H.W. Lenstra, Jr., B. Mazur, K. Ribet, D.E. Rohrlich, M. Rosen, K. Rubin, R. Schoof, A. Silverberg, J.H. Silverman, P. Stevenhagen, G. Stevens, J. Tate, J. Tilouine, and L. Washington. The book begins with an overview of the complete proof, followed by several introductory chapters surveying the basic theory of elliptic curves, modular functions, modular curves, Galois cohomology, and finite group schemes. Representation theory, which lies at the core of Wiles' proof, is dealt with in a chapter on automorphic representations and the Langlands-Tunnell theorem, and this is followed by in-depth discussions of Serre's conjectures, Galois deformations, universal deformation rings, Hecke algebras, complete intersections and more, as the reader is led step-by-step through Wiles' proof. In recognition of the historical significance of Fermat's Last Theorem, the volume concludes by looking both forward and backward in time, reflecting on the history of the problem, while placing Wiles' theorem into a more general Diophantine context suggesting future applications. Students and professional mathematicians alike will find this volume to be an indispensable TOC:Preface.- Contributors.- Schedule of Lectures.- Introduction.- An Overview of the Proof of Fermat's Last Theorem.- A Survey of the Arithmetic Theory of Elliptic Curves.- Modular Curves, Hecke Correspondences, and L-Functions.- Galois Cohomology.- Finite Flat Group Schemes.- Three Lectures on the Modularity of PE.3 and the Langlands Reciprocity Conjecture.- Serre's Conjectures.- An Introduction to the Deformation Theory of Galois Representations.- Explicit Construction of Universal Deformation Rings.- Hecke Algebras and the Gorenstein Property.- Criteria for Complete Intersections.- l-adic Modular Deformations and Wiles's "Main Conjecture".- The Flat Deformation Functor.- Hecke Rings and Universal Deformation Rings.- Explicit Families of Elliptic Curves with Prescribed Mod N Representations.- Modularity of Mod 5 Representations.- An Extension of Wiles' Results.- Appendix to Chapter 17: Classification of PE.1 by the j Invariant of E.- Class Field Theory and the First Case of Fermat's Last Theorem.- Remarks on the History of Fermat's Last Theorem 1844 to 1984.- On Ternary Equations of Fermat Type and Relations with Elliptic Curves.- Wiles' Theorem and the Arithmetic of Elliptic Curves. 9780387946092 Wir verkaufen nur, was wir auch selbst lesen würden. Sprache: Deutsch Gewicht in Gramm: 967. Codice articolo 88758
Quantità: 1 disponibili
Da: Encore Books, Montreal, QC, Canada
Hardcover. Condizione: Near Fine. 2nd Edition. Hardcover book in near fine condition. Questions welcome. We ship internationally from the United States and Canada every week. If buying internationally, please be aware that additional charges may apply for heavier books. We guarantee a safe, quick, and secure transaction. 10+ years in online bookselling experience. Codice articolo 022277
Quantità: 1 disponibili
Da: Moe's Books, Berkeley, CA, U.S.A.
hardcover. Condizione: good. Bottom edge faintly stained. Codice articolo 1119571
Quantità: 1 disponibili
Da: Anybook.com, Lincoln, Regno Unito
Condizione: Good. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. In good all round condition. No dust jacket. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,1050grams, ISBN:9780387946092. Codice articolo 4840799
Quantità: 1 disponibili
Da: Midway Book Store (ABAA), St. Paul, MN, U.S.A.
Hardcover. Condizione: Very Good. Corrected Second Printing. 24 x 16 cm. xx 582pp. Index. Bound into glossy yellow boards. Bump to tail of spine. "This volume is a record of an instructional conference on number theory and arithmetic geometry held from August 9 through 18, 1995 at Boston University. It contains expanded version of all of the major lectures given during the conference.". Codice articolo 79664
Quantità: 1 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9780387946092_new
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 22002247-n
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: As New. Unread book in perfect condition. Codice articolo 22002247
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 22002247
Quantità: Più di 20 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Hardback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 1005. Codice articolo C9780387946092
Quantità: Più di 20 disponibili