Numerical Bayesian Methods Applied to Signal Processing

Valutazione media 0
( su 0 valutazioni fornite da Goodreads )
 
9780387946290: Numerical Bayesian Methods Applied to Signal Processing
Vedi tutte le copie di questo ISBN:
 
 

This book is concerned with the processing of signals that have been sam­ pled and digitized. The fundamental theory behind Digital Signal Process­ ing has been in existence for decades and has extensive applications to the fields of speech and data communications, biomedical engineering, acous­ tics, sonar, radar, seismology, oil exploration, instrumentation and audio signal processing to name but a few [87]. The term "Digital Signal Processing", in its broadest sense, could apply to any operation carried out on a finite set of measurements for whatever purpose. A book on signal processing would usually contain detailed de­ scriptions of the standard mathematical machinery often used to describe signals. It would also motivate an approach to real world problems based on concepts and results developed in linear systems theory, that make use of some rather interesting properties of the time and frequency domain representations of signals. While this book assumes some familiarity with traditional methods the emphasis is altogether quite different. The aim is to describe general methods for carrying out optimal signal processing.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Contenuti:

1 Introduction.- 2 Probabilistic Inference in Signal Processing.- 2.1 Introduction.- 2.2 The likelihood function.- 2.2.1 Maximum likelihood.- 2.3 Bayesian data analysis.- 2.4 Prior probabilities.- 2.4.1 Flat priors.- 2.4.2 Smoothness priors.- 2.4.3 Convenience priors.- 2.5 The removal of nuisance parameters.- 2.6 Model selection using Bayesian evidence.- 2.6.1 Ockham’s razor.- 2.7 The general linear model.- 2.8 Interpretations of the general linear model.- 2.8.1 Features.- 2.8.2 Orthogonalization.- 2.9 Example of marginalization.- 2.9.1 Results.- 2.10 Example of model selection.- 2.10.1 Closed form expression for evidence.- 2.10.2 Determining the order of a polynomial.- 2.10.3 Determining the order of an AR process.- 2.11 Concluding remarks.- 3 Numerical Bayesian Inference.- 3.1 The normal approximation.- 3.1.1 Effect of number of data on the likelihood function.- 3.1.2 Taylor approximation.- 3.1.3 Reparameterization.- 3.1.4 Jacobian of transformation.- 3.1.5 Normal approximation to evidence.- 3.1.6 Normal approximation to the marginal density.- 3.1.7 The delta method.- 3.2 Optimization.- 3.2.1 Local algorithms.- 3.2.2 Global algorithms.- 3.2.3 Concluding remarks.- 3.3 Integration.- 3.4 Numerical quadrature.- 3.4.1 Multiple integrals.- 3.5 Asymptotic approximations.- 3.5.1 The saddlepoint approximation and Edgeworth series.- 3.5.2 The Laplace approximation.- 3.5.3 Moments and expectations.- 3.5.4 Marginalization.- 3.6 The Monte Carlo method.- 3.7 The generation of random variates.- 3.7.1 Uniform variates.- 3.7.2 Non-uniform variates.- 3.7.3 Transformation of variables.- 3.7.4 The rejection method.- 3.7.5 Other methods.- 3.8 Evidence using importance sampling.- 3.8.1 Choice of sampling density.- 3.8.2 Orthogonalization using noise colouring.- 3.9 Marginal densities.- 3.9.1 Histograms.- 3.9.2 Jointly distributed variates.- 3.9.3 The dummy variable method.- 3.9.4 Marginalization using jointly distributed variates.- 3.10 Opportunities for variance reduction.- 3.10.1 Quasi-random sequences.- 3.10.2 Antithetic variates.- 3.10.3 Control variates.- 3.10.4 Stratified sampling.- 3.11 Summary.- 4 Markov Chain Monte Carlo Methods.- 4.1 Introduction.- 4.2 Background on Markov chains.- 4.3 The canonical distribution.- 4.3.1 Energy, temperature and probability.- 4.3.2 Random walks.- 4.3.3 Free energy and model selection.- 4.4 The Gibbs sampler.- 4.4.1 Description.- 4.4.2 Discussion.- 4.4.3 Convergence.- 4.5 The Metropolis-Hastings algorithm.- 4.5.1 The general algorithm.- 4.5.2 Convergence.- 4.5.3 Choosing the proposal density.- 4.5.4 Relationship between Gibbs and Metropolis.- 4.6 Dynamical sampling methods.- 4.6.1 Derivation.- 4.6.2 Hamiltonian dynamics.- 4.6.3 Stochastic transitions.- 4.6.4 Simulating the dynamics.- 4.6.5 Hybrid Monte Carlo.- 4.6.6 Convergence to canonical distribution.- 4.7 Implementation of simulated annealing.- 4.7.1 Annealing schedules.- 4.7.2 Annealing with Markov chains.- 4.8 Other issues.- 4.8.1 Assessing convergence of Markov chains.- 4.8.2 Determining the variance of estimates.- 4.9 Free energy estimation.- 4.9.1 Thermodynamic integration.- 4.9.2 Other methods.- 4.10 Summary.- 5 Retrospective Changepoint Detection.- 5.1 Introduction.- 5.2 The simple Bayesian step detector.- 5.2.1 Derivation of the step detector.- 5.2.2 Application of the step detector.- 5.3 The detection of changepoints using the general linear model.- 5.3.1 The general piecewise linear model.- 5.3.2 Simple step detector in generalized matrix form.- 5.3.3 Changepoint detection in AR models.- 5.3.4 Application of AR changepoint detector.- 5.4 Recursive Bayesian estimation.- 5.4.1 Update of position.- 5.4.2 Update given more data.- 5.5 Detection of multiple changepoints.- 5.6 Implementation details.- 5.6.1 Sampling changepoint space.- 5.6.2 Sampling linear parameter space.- 5.6.3 Sampling noise parameter space.- 5.7 Multiple changepoint results.- 5.7.1 Synthetic step data.- 5.7.2 Well log data.- 5.8 Concluding Remarks.- 6 Restoration of Missing Samples in Digital Audio Signals.- 6.1 Introduction.- 6.2 Model formulation.- 6.2.1 The likelihood and the excitation energy.- 6.2.2 Maximum likelihood.- 6.3 The EM algorithm.- 6.3.1 Expectation.- 6.3.2 Maximization.- 6.4 Gibbs sampling.- 6.4.1 Description.- 6.4.2 Derivation of conditional densities.- 6.4.3 Conditional density for the missing data.- 6.4.4 Conditional density for the autoregressive parameters.- 6.4.5 Conditional density for the standard deviation.- 6.5 Implementation issues.- 6.5.1 Estimating AR parameters.- 6.5.2 Implementing the ML algorithm.- 6.5.3 Implementing the EM algorithm.- 6.5.4 Implementation of Gibbs sampler.- 6.6 Relationship between the three restoration methods.- 6.6.1 ML vs Gibbs.- 6.6.2 Gibbs vs EM.- 6.6.3 EM vs ML.- 6.7 Simulations.- 6.7.1 Autoregressive model with poles near unit circle.- 6.7.2 Autoregressive model with poles near origin.- 6.7.3 Sine wave.- 6.7.4 Evolution of sample interpolants.- 6.7.5 Hairy sine wave.- 6.7.6 Real data: Tuba.- 6.7.7 Real data: Sinéad O’Connor.- 6.8 Discussion.- 6.8.1 The temperature of an interpolant.- 6.8.2 Data augmentation.- 6.9 Concluding remarks.- 6.9.1 Typical interpolants.- 6.9.2 Computation.- 6.9.3 Modelling issues.- 7 Integration in Bayesian Data Analysis.- 7.1 Polynomial data.- 7.1.1 Polynomial data.- 7.1.2 Sampling the joint density.- 7.1.3 Approximate evidence.- 7.1.4 Approximate marginal densities.- 7.1.5 Conclusion.- 7.2 Decay problem.- 7.2.1 The Lanczos problem.- 7.2.2 Biomedical data.- 7.2.3 Concluding remarks.- 7.3 General model selection.- 7.3.1 Model selection in an impulsive noise environment.- 7.3.2 Model selection in a Gaussian noise environment.- 7.4 Summary.- 8 Conclusion.- 8.1 A review of the work.- 8.2 Further work.- A The General Linear Model.- A.1 Integrating out model amplitudes.- A.1.1 Least squares.- A.1.2 Orthogonalization.- A.2 Integrating out the standard deviation.- A.3 Marginal density for a linear coefficient.- A.4 Marginal density for standard deviation.- A.5 Conditional density for a linear coefficient.- A.6 Conditional density for standard deviation.- B Sampling from a Multivariate Gaussian Density.- C Hybrid Monte Carlo Derivations.- C.1 Full Gaussian likelihood.- C.2 Student-t distribution.- C.3 Remark.- D EM Algorithm Derivations.- D.l Expectation.- D.2 Maximization.- E Issues in Sampling Based Approaches to Integration.- E.1 Marginalizing using the conditional density.- E.2 Approximating the conditional density.- E.3 Gibbs sampling from the joint density.- E.4 Reverse importance sampling.- F Detailed Balance.- F.1 Detailed balance in the Gibbs sampler.- F.2 Detailed balance in the Metropolis Hastings algorithm..- F.3 Detailed balance in the Hybrid Monte Carlo algorithm..- F.4 Remarks.- References.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

I migliori risultati di ricerca su AbeBooks

1.

O Ruanaidh, Joseph J.K.
Editore: Springer (2016)
ISBN 10: 0387946292 ISBN 13: 9780387946290
Nuovo Paperback Quantità: 1
Print on Demand
Da
Ria Christie Collections
(Uxbridge, Regno Unito)
Valutazione libreria
[?]

Descrizione libro Springer, 2016. Paperback. Condizione: New. PRINT ON DEMAND Book; New; Publication Year 2016; Not Signed; Fast Shipping from the UK. No. book. Codice articolo ria9780387946290_lsuk

Informazioni sul venditore | Contattare il venditore

Compra nuovo
EUR 230,69
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 4,96
Da: Regno Unito a: Italia
Destinazione, tempi e costi

2.

Joseph J.K. O Ruanaidh, William J. Fitzgerald
Editore: Springer-Verlag New York Inc., United States (1996)
ISBN 10: 0387946292 ISBN 13: 9780387946290
Nuovo Rilegato Quantità: 10
Da
Book Depository hard to find
(London, Regno Unito)
Valutazione libreria
[?]

Descrizione libro Springer-Verlag New York Inc., United States, 1996. Hardback. Condizione: New. 1996 ed.. Language: English . This book usually ship within 10-15 business days and we will endeavor to dispatch orders quicker than this where possible. Brand New Book. This book is concerned with the processing of signals that have been sam- pled and digitized. The fundamental theory behind Digital Signal Process- ing has been in existence for decades and has extensive applications to the fields of speech and data communications, biomedical engineering, acous- tics, sonar, radar, seismology, oil exploration, instrumentation and audio signal processing to name but a few [87]. The term Digital Signal Processing , in its broadest sense, could apply to any operation carried out on a finite set of measurements for whatever purpose. A book on signal processing would usually contain detailed de- scriptions of the standard mathematical machinery often used to describe signals. It would also motivate an approach to real world problems based on concepts and results developed in linear systems theory, that make use of some rather interesting properties of the time and frequency domain representations of signals. While this book assumes some familiarity with traditional methods the emphasis is altogether quite different. The aim is to describe general methods for carrying out optimal signal processing. Codice articolo LIE9780387946290

Informazioni sul venditore | Contattare il venditore

Compra nuovo
EUR 235,86
Convertire valuta

Aggiungere al carrello

Spese di spedizione: GRATIS
Da: Regno Unito a: Italia
Destinazione, tempi e costi

3.

Joseph J. K. O Ruanaidh; William John Fitzgerald
ISBN 10: 0387946292 ISBN 13: 9780387946290
Nuovo Quantità: 1
Da
BennettBooksLtd
(San Diego, CA, U.S.A.)
Valutazione libreria
[?]

Descrizione libro Condizione: New. New. Codice articolo S-0387946292

Informazioni sul venditore | Contattare il venditore

Compra nuovo
EUR 213,47
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 27,42
Da: U.S.A. a: Italia
Destinazione, tempi e costi

4.

Joseph J.K. O Ruanaidh
Editore: Springer-Verlag New York Inc. (1996)
ISBN 10: 0387946292 ISBN 13: 9780387946290
Nuovo Quantità: > 20
Print on Demand
Da
Books2Anywhere
(Fairford, GLOS, Regno Unito)
Valutazione libreria
[?]

Descrizione libro Springer-Verlag New York Inc., 1996. HRD. Condizione: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo IQ-9780387946290

Informazioni sul venditore | Contattare il venditore

Compra nuovo
EUR 238,10
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 11,25
Da: Regno Unito a: Italia
Destinazione, tempi e costi

5.

Joseph J.K. O Ruanaidh
Editore: Springer-Verlag New York Inc. (1996)
ISBN 10: 0387946292 ISBN 13: 9780387946290
Nuovo Quantità: > 20
Print on Demand
Da
Pbshop
(Wood Dale, IL, U.S.A.)
Valutazione libreria
[?]

Descrizione libro Springer-Verlag New York Inc., 1996. HRD. Condizione: New. New Book. Shipped from US within 10 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo IQ-9780387946290

Informazioni sul venditore | Contattare il venditore

Compra nuovo
EUR 241,66
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 9,87
Da: U.S.A. a: Italia
Destinazione, tempi e costi

6.

JOSEPH J.K. O RUANAIDH
Editore: Springer (1996)
ISBN 10: 0387946292 ISBN 13: 9780387946290
Nuovo Rilegato Quantità: 1
Da
Herb Tandree Philosophy Books
(Stroud, GLOS, Regno Unito)
Valutazione libreria
[?]

Descrizione libro Springer, 1996. Hardback. Condizione: NEW. 9780387946290 This listing is a new book, a title currently in-print which we order directly and immediately from the publisher. For all enquiries, please contact Herb Tandree Philosophy Books directly - customer service is our primary goal. Codice articolo HTANDREE0275511

Informazioni sul venditore | Contattare il venditore

Compra nuovo
EUR 245,91
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 8,97
Da: Regno Unito a: Italia
Destinazione, tempi e costi

7.

Joseph J.K. O Ruanaidh, William J. Fitzgerald
Editore: Springer (1996)
ISBN 10: 0387946292 ISBN 13: 9780387946290
Nuovo Rilegato Quantità: 1
Da
Ergodebooks
(RICHMOND, TX, U.S.A.)
Valutazione libreria
[?]

Descrizione libro Springer, 1996. Hardcover. Condizione: New. 1996. Codice articolo DADAX0387946292

Informazioni sul venditore | Contattare il venditore

Compra nuovo
EUR 254,18
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 10,30
Da: U.S.A. a: Italia
Destinazione, tempi e costi

8.

Joseph J.K. O Ruanaidh, William J. Fitzgerald
Editore: Springer-Verlag New York Inc., United States (1996)
ISBN 10: 0387946292 ISBN 13: 9780387946290
Nuovo Rilegato Quantità: 10
Print on Demand
Da
The Book Depository
(London, Regno Unito)
Valutazione libreria
[?]

Descrizione libro Springer-Verlag New York Inc., United States, 1996. Hardback. Condizione: New. 1996 ed.. Language: English . Brand New Book ***** Print on Demand *****.This book is concerned with the processing of signals that have been sam- pled and digitized. The fundamental theory behind Digital Signal Process- ing has been in existence for decades and has extensive applications to the fields of speech and data communications, biomedical engineering, acous- tics, sonar, radar, seismology, oil exploration, instrumentation and audio signal processing to name but a few [87]. The term Digital Signal Processing , in its broadest sense, could apply to any operation carried out on a finite set of measurements for whatever purpose. A book on signal processing would usually contain detailed de- scriptions of the standard mathematical machinery often used to describe signals. It would also motivate an approach to real world problems based on concepts and results developed in linear systems theory, that make use of some rather interesting properties of the time and frequency domain representations of signals. While this book assumes some familiarity with traditional methods the emphasis is altogether quite different. The aim is to describe general methods for carrying out optimal signal processing. Codice articolo APC9780387946290

Informazioni sul venditore | Contattare il venditore

Compra nuovo
EUR 284,30
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 0,56
Da: Regno Unito a: Italia
Destinazione, tempi e costi

9.

Joseph J.K. O Ruanaidh, William J. Fitzgerald
Editore: Springer-Verlag New York Inc., United States (1996)
ISBN 10: 0387946292 ISBN 13: 9780387946290
Nuovo Rilegato Quantità: 10
Print on Demand
Da
Book Depository International
(London, Regno Unito)
Valutazione libreria
[?]

Descrizione libro Springer-Verlag New York Inc., United States, 1996. Hardback. Condizione: New. 1996 ed.. Language: English . Brand New Book ***** Print on Demand *****. This book is concerned with the processing of signals that have been sam- pled and digitized. The fundamental theory behind Digital Signal Process- ing has been in existence for decades and has extensive applications to the fields of speech and data communications, biomedical engineering, acous- tics, sonar, radar, seismology, oil exploration, instrumentation and audio signal processing to name but a few [87]. The term Digital Signal Processing , in its broadest sense, could apply to any operation carried out on a finite set of measurements for whatever purpose. A book on signal processing would usually contain detailed de- scriptions of the standard mathematical machinery often used to describe signals. It would also motivate an approach to real world problems based on concepts and results developed in linear systems theory, that make use of some rather interesting properties of the time and frequency domain representations of signals. While this book assumes some familiarity with traditional methods the emphasis is altogether quite different. The aim is to describe general methods for carrying out optimal signal processing. Codice articolo APC9780387946290

Informazioni sul venditore | Contattare il venditore

Compra nuovo
EUR 287,05
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 0,57
Da: Regno Unito a: Italia
Destinazione, tempi e costi

10.

Joseph J.K. O Ruanaidh; William J. Fitzgerald
Editore: Springer (1996)
ISBN 10: 0387946292 ISBN 13: 9780387946290
Nuovo Rilegato Quantità: 15
Print on Demand
Da
Valutazione libreria
[?]

Descrizione libro Springer, 1996. Condizione: New. This item is printed on demand for shipment within 3 working days. Codice articolo LP9780387946290

Informazioni sul venditore | Contattare il venditore

Compra nuovo
EUR 302,68
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 5,99
Da: Germania a: Italia
Destinazione, tempi e costi

Vedi altre copie di questo libro

Vedi tutti i risultati per questo libro