Articoli correlati a Numerical Bayesian Methods Applied to Signal Processing

Numerical Bayesian Methods Applied to Signal Processing - Rilegato

 
9780387946290: Numerical Bayesian Methods Applied to Signal Processing

Sinossi

This book is concerned with the processing of signals that have been sam­ pled and digitized. The fundamental theory behind Digital Signal Process­ ing has been in existence for decades and has extensive applications to the fields of speech and data communications, biomedical engineering, acous­ tics, sonar, radar, seismology, oil exploration, instrumentation and audio signal processing to name but a few [87]. The term "Digital Signal Processing", in its broadest sense, could apply to any operation carried out on a finite set of measurements for whatever purpose. A book on signal processing would usually contain detailed de­ scriptions of the standard mathematical machinery often used to describe signals. It would also motivate an approach to real world problems based on concepts and results developed in linear systems theory, that make use of some rather interesting properties of the time and frequency domain representations of signals. While this book assumes some familiarity with traditional methods the emphasis is altogether quite different. The aim is to describe general methods for carrying out optimal signal processing.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Contenuti

1 Introduction.- 2 Probabilistic Inference in Signal Processing.- 2.1 Introduction.- 2.2 The likelihood function.- 2.2.1 Maximum likelihood.- 2.3 Bayesian data analysis.- 2.4 Prior probabilities.- 2.4.1 Flat priors.- 2.4.2 Smoothness priors.- 2.4.3 Convenience priors.- 2.5 The removal of nuisance parameters.- 2.6 Model selection using Bayesian evidence.- 2.6.1 Ockham’s razor.- 2.7 The general linear model.- 2.8 Interpretations of the general linear model.- 2.8.1 Features.- 2.8.2 Orthogonalization.- 2.9 Example of marginalization.- 2.9.1 Results.- 2.10 Example of model selection.- 2.10.1 Closed form expression for evidence.- 2.10.2 Determining the order of a polynomial.- 2.10.3 Determining the order of an AR process.- 2.11 Concluding remarks.- 3 Numerical Bayesian Inference.- 3.1 The normal approximation.- 3.1.1 Effect of number of data on the likelihood function.- 3.1.2 Taylor approximation.- 3.1.3 Reparameterization.- 3.1.4 Jacobian of transformation.- 3.1.5 Normal approximation to evidence.- 3.1.6 Normal approximation to the marginal density.- 3.1.7 The delta method.- 3.2 Optimization.- 3.2.1 Local algorithms.- 3.2.2 Global algorithms.- 3.2.3 Concluding remarks.- 3.3 Integration.- 3.4 Numerical quadrature.- 3.4.1 Multiple integrals.- 3.5 Asymptotic approximations.- 3.5.1 The saddlepoint approximation and Edgeworth series.- 3.5.2 The Laplace approximation.- 3.5.3 Moments and expectations.- 3.5.4 Marginalization.- 3.6 The Monte Carlo method.- 3.7 The generation of random variates.- 3.7.1 Uniform variates.- 3.7.2 Non-uniform variates.- 3.7.3 Transformation of variables.- 3.7.4 The rejection method.- 3.7.5 Other methods.- 3.8 Evidence using importance sampling.- 3.8.1 Choice of sampling density.- 3.8.2 Orthogonalization using noise colouring.- 3.9 Marginal densities.- 3.9.1 Histograms.- 3.9.2 Jointly distributed variates.- 3.9.3 The dummy variable method.- 3.9.4 Marginalization using jointly distributed variates.- 3.10 Opportunities for variance reduction.- 3.10.1 Quasi-random sequences.- 3.10.2 Antithetic variates.- 3.10.3 Control variates.- 3.10.4 Stratified sampling.- 3.11 Summary.- 4 Markov Chain Monte Carlo Methods.- 4.1 Introduction.- 4.2 Background on Markov chains.- 4.3 The canonical distribution.- 4.3.1 Energy, temperature and probability.- 4.3.2 Random walks.- 4.3.3 Free energy and model selection.- 4.4 The Gibbs sampler.- 4.4.1 Description.- 4.4.2 Discussion.- 4.4.3 Convergence.- 4.5 The Metropolis-Hastings algorithm.- 4.5.1 The general algorithm.- 4.5.2 Convergence.- 4.5.3 Choosing the proposal density.- 4.5.4 Relationship between Gibbs and Metropolis.- 4.6 Dynamical sampling methods.- 4.6.1 Derivation.- 4.6.2 Hamiltonian dynamics.- 4.6.3 Stochastic transitions.- 4.6.4 Simulating the dynamics.- 4.6.5 Hybrid Monte Carlo.- 4.6.6 Convergence to canonical distribution.- 4.7 Implementation of simulated annealing.- 4.7.1 Annealing schedules.- 4.7.2 Annealing with Markov chains.- 4.8 Other issues.- 4.8.1 Assessing convergence of Markov chains.- 4.8.2 Determining the variance of estimates.- 4.9 Free energy estimation.- 4.9.1 Thermodynamic integration.- 4.9.2 Other methods.- 4.10 Summary.- 5 Retrospective Changepoint Detection.- 5.1 Introduction.- 5.2 The simple Bayesian step detector.- 5.2.1 Derivation of the step detector.- 5.2.2 Application of the step detector.- 5.3 The detection of changepoints using the general linear model.- 5.3.1 The general piecewise linear model.- 5.3.2 Simple step detector in generalized matrix form.- 5.3.3 Changepoint detection in AR models.- 5.3.4 Application of AR changepoint detector.- 5.4 Recursive Bayesian estimation.- 5.4.1 Update of position.- 5.4.2 Update given more data.- 5.5 Detection of multiple changepoints.- 5.6 Implementation details.- 5.6.1 Sampling changepoint space.- 5.6.2 Sampling linear parameter space.- 5.6.3 Sampling noise parameter space.- 5.7 Multiple changepoint results.- 5.7.1 Synthetic step data.- 5.7.2 Well log data.- 5.8 Concluding Remarks.- 6 Restoration of Missing Samples in Digital Audio Signals.- 6.1 Introduction.- 6.2 Model formulation.- 6.2.1 The likelihood and the excitation energy.- 6.2.2 Maximum likelihood.- 6.3 The EM algorithm.- 6.3.1 Expectation.- 6.3.2 Maximization.- 6.4 Gibbs sampling.- 6.4.1 Description.- 6.4.2 Derivation of conditional densities.- 6.4.3 Conditional density for the missing data.- 6.4.4 Conditional density for the autoregressive parameters.- 6.4.5 Conditional density for the standard deviation.- 6.5 Implementation issues.- 6.5.1 Estimating AR parameters.- 6.5.2 Implementing the ML algorithm.- 6.5.3 Implementing the EM algorithm.- 6.5.4 Implementation of Gibbs sampler.- 6.6 Relationship between the three restoration methods.- 6.6.1 ML vs Gibbs.- 6.6.2 Gibbs vs EM.- 6.6.3 EM vs ML.- 6.7 Simulations.- 6.7.1 Autoregressive model with poles near unit circle.- 6.7.2 Autoregressive model with poles near origin.- 6.7.3 Sine wave.- 6.7.4 Evolution of sample interpolants.- 6.7.5 Hairy sine wave.- 6.7.6 Real data: Tuba.- 6.7.7 Real data: Sinéad O’Connor.- 6.8 Discussion.- 6.8.1 The temperature of an interpolant.- 6.8.2 Data augmentation.- 6.9 Concluding remarks.- 6.9.1 Typical interpolants.- 6.9.2 Computation.- 6.9.3 Modelling issues.- 7 Integration in Bayesian Data Analysis.- 7.1 Polynomial data.- 7.1.1 Polynomial data.- 7.1.2 Sampling the joint density.- 7.1.3 Approximate evidence.- 7.1.4 Approximate marginal densities.- 7.1.5 Conclusion.- 7.2 Decay problem.- 7.2.1 The Lanczos problem.- 7.2.2 Biomedical data.- 7.2.3 Concluding remarks.- 7.3 General model selection.- 7.3.1 Model selection in an impulsive noise environment.- 7.3.2 Model selection in a Gaussian noise environment.- 7.4 Summary.- 8 Conclusion.- 8.1 A review of the work.- 8.2 Further work.- A The General Linear Model.- A.1 Integrating out model amplitudes.- A.1.1 Least squares.- A.1.2 Orthogonalization.- A.2 Integrating out the standard deviation.- A.3 Marginal density for a linear coefficient.- A.4 Marginal density for standard deviation.- A.5 Conditional density for a linear coefficient.- A.6 Conditional density for standard deviation.- B Sampling from a Multivariate Gaussian Density.- C Hybrid Monte Carlo Derivations.- C.1 Full Gaussian likelihood.- C.2 Student-t distribution.- C.3 Remark.- D EM Algorithm Derivations.- D.l Expectation.- D.2 Maximization.- E Issues in Sampling Based Approaches to Integration.- E.1 Marginalizing using the conditional density.- E.2 Approximating the conditional density.- E.3 Gibbs sampling from the joint density.- E.4 Reverse importance sampling.- F Detailed Balance.- F.1 Detailed balance in the Gibbs sampler.- F.2 Detailed balance in the Metropolis Hastings algorithm..- F.3 Detailed balance in the Hybrid Monte Carlo algorithm..- F.4 Remarks.- References.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: ottimo
Statistics and Computing. xiv,...
Visualizza questo articolo

EUR 21,23 per la spedizione da Canada a Italia

Destinazione, tempi e costi

EUR 25,48 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9781461268802: Numerical Bayesian Methods Applied to Signal Processing

Edizione in evidenza

ISBN 10:  146126880X ISBN 13:  9781461268802
Casa editrice: Springer, 2012
Brossura

Risultati della ricerca per Numerical Bayesian Methods Applied to Signal Processing

Immagini fornite dal venditore

O RUANAIDH, Joseph J. K.; FITZGERALD, William J.
Editore: Springer, New York, 1996
ISBN 10: 0387946292 ISBN 13: 9780387946290
Antico o usato Rilegato

Da: Attic Books (ABAC, ILAB), London, ON, Canada

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardcover. Condizione: Fine. Statistics and Computing. xiv, 244 p. 24 cm. 118 b&w figures. Yellow hardcover. Topics: probabilistic inference in signal processing; numerical Bayesian inference; Markov Chain Monte Carlo methods; retrospective changepoint detection; restoration of missing samples in digital audio signals; integration in Bayesian data analysis. Appendices and index. Codice articolo 116405

Contatta il venditore

Compra usato

EUR 17,50
Convertire valuta
Spese di spedizione: EUR 21,23
Da: Canada a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

O Ruanaidh, Joseph J.K.
Editore: Springer, 1996
ISBN 10: 0387946292 ISBN 13: 9780387946290
Antico o usato Rilegato

Da: Anybook.com, Lincoln, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: Good. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. In good all round condition. No dust jacket. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,600grams, ISBN:9780387946290. Codice articolo 5831598

Contatta il venditore

Compra usato

EUR 47,52
Convertire valuta
Spese di spedizione: EUR 9,76
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

O Ruanaidh, Joseph J.K.
Editore: Springer, 1996
ISBN 10: 0387946292 ISBN 13: 9780387946290
Antico o usato Rilegato

Da: Anybook.com, Lincoln, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: Good. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. In good all round condition. No dust jacket. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,600grams, ISBN:9780387946290. Codice articolo 5831601

Contatta il venditore

Compra usato

EUR 47,52
Convertire valuta
Spese di spedizione: EUR 9,76
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

O Ruanaidh, Joseph J.K.; Fitzgerald, William J.
Editore: Springer, 1996
ISBN 10: 0387946292 ISBN 13: 9780387946290
Antico o usato Rilegato

Da: Solr Books, Lincolnwood, IL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: good. This book is in Good condition. There may be some notes and highligting but otherwise the book is in overall good condition. Codice articolo 5D4000009S3Q_ns

Contatta il venditore

Compra usato

EUR 28,91
Convertire valuta
Spese di spedizione: EUR 63,70
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Fitzgerald, William J.,O Ruanaidh, Joseph J.K.
Editore: Springer, 1996
ISBN 10: 0387946292 ISBN 13: 9780387946290
Antico o usato Rilegato

Da: HPB-Red, Dallas, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardcover. Condizione: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Codice articolo S_388330373

Contatta il venditore

Compra usato

EUR 25,43
Convertire valuta
Spese di spedizione: EUR 91,73
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

O Ruanaidh, Joseph J.K.
Editore: Springer, 1996
ISBN 10: 0387946292 ISBN 13: 9780387946290
Nuovo Rilegato

Da: Toscana Books, AUSTIN, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardcover. Condizione: new. Excellent Condition.Excels in customer satisfaction, prompt replies, and quality checks. Codice articolo Scanned0387946292

Contatta il venditore

Compra nuovo

EUR 150,43
Convertire valuta
Spese di spedizione: EUR 25,48
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Joseph J.K. O Ruanaidh|William J. Fitzgerald
Editore: Springer New York, 1996
ISBN 10: 0387946292 ISBN 13: 9780387946290
Nuovo Rilegato

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 5912108

Contatta il venditore

Compra nuovo

EUR 180,07
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

William J. Fitzgerald
ISBN 10: 0387946292 ISBN 13: 9780387946290
Nuovo Rilegato
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is concerned with the processing of signals that have been sam pled and digitized. The fundamental theory behind Digital Signal Process ing has been in existence for decades and has extensive applications to the fields of speech and data communications, biomedical engineering, acous tics, sonar, radar, seismology, oil exploration, instrumentation and audio signal processing to name but a few [87]. The term 'Digital Signal Processing', in its broadest sense, could apply to any operation carried out on a finite set of measurements for whatever purpose. A book on signal processing would usually contain detailed de scriptions of the standard mathematical machinery often used to describe signals. It would also motivate an approach to real world problems based on concepts and results developed in linear systems theory, that make use of some rather interesting properties of the time and frequency domain representations of signals. While this book assumes some familiarity with traditional methods the emphasis is altogether quite different. The aim is to describe general methods for carrying out optimal signal processing. 264 pp. Englisch. Codice articolo 9780387946290

Contatta il venditore

Compra nuovo

EUR 213,99
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

William J. Fitzgerald
ISBN 10: 0387946292 ISBN 13: 9780387946290
Nuovo Rilegato

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. Neuware -This book is concerned with the processing of signals that have been sam pled and digitized. The fundamental theory behind Digital Signal Process ing has been in existence for decades and has extensive applications to the fields of speech and data communications, biomedical engineering, acous tics, sonar, radar, seismology, oil exploration, instrumentation and audio signal processing to name but a few [87]. The term 'Digital Signal Processing', in its broadest sense, could apply to any operation carried out on a finite set of measurements for whatever purpose. A book on signal processing would usually contain detailed de scriptions of the standard mathematical machinery often used to describe signals. It would also motivate an approach to real world problems based on concepts and results developed in linear systems theory, that make use of some rather interesting properties of the time and frequency domain representations of signals. While this book assumes some familiarity with traditional methods the emphasis is altogether quite different. The aim is to describe general methods for carrying out optimal signal processing.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 264 pp. Englisch. Codice articolo 9780387946290

Contatta il venditore

Compra nuovo

EUR 213,99
Convertire valuta
Spese di spedizione: EUR 15,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

O Ruanaidh, Joseph J.K.; Fitzgerald, William J.
Editore: Springer, 1996
ISBN 10: 0387946292 ISBN 13: 9780387946290
Nuovo Rilegato

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9780387946290_new

Contatta il venditore

Compra nuovo

EUR 227,17
Convertire valuta
Spese di spedizione: EUR 10,37
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Vedi altre 5 copie di questo libro

Vedi tutti i risultati per questo libro