This book originated from a forefront R&D project pursued at Siemens Corporate Technology over the past several years. As a name for this project, we chose "Information Dynamics", which stands for information processing in complex dynamical systems. In the project, we wanted to grasp the flow of information in such systems in a quantitative manner, on the one hand by making use of an existing arsenal of methods and techniques from areas such as information theory, mathematical statistics, neural networks, nonlinear dynamics, probability theory, and statistical physics, and on the other hand by deriving new methods and techniques if required. The book contains only those contributions to the above-mentioned project which lend themselves to a unifying theoretical framework. Other important results obtained in the project, such as the extension of transport-theoretic techniques and their application to optimizing traffic flow, or the design of new neural network architectures for treating systems at the edge of chaos with applications in economics, are left out. This certainly is a sacrifice, but we think it is of benefit to the reader that we tried to be as focused and self contained as possible.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
l Introduction.- 2 Dynamical Systems: An Overview 7.- 2.1 Deterministic Dynamical Systems.- 2.1.1 Fundamental Concepts.- 2.1.2 Attractors.- 2.1.3 Strange Attractors: Chaotic Dynamics.- 2.1.4 Quantitative Description of Chaos.- 2.1.5 Chaotic Dynamical Systems.- 2.2 Stochastic Dynamical Systems.- 2.2.1 Gaussian White Noise.- 2.2.2 Markov Processes.- 2.2.3 Linear and Nonlinear Stochastic Dynamics.- 2.3 Statistical Time-Series Analysis.- 2.3.1 Nonstationarity: Slicing Windows.- 2.3.2 Linear Statistical Inference: Correlations and Power Spectrum.- 2.3.3 Linear Filter.- 3 Statistical Structure Extraction in Dynamical Systems: Parametric Formulation.- 3.1 Basic Concepts of Information Theory.- 3.2 Parametric Estimation : Maximum-Likelihood Principle.- 3.2.1 Bayesian Estimation.- 3.2.2 Maximum Likelihood.- 3.2.3 Maximum-Entropy Principle.- 3.2.4 Minimum Kullback-Leibler Entropy.- 3.3 Linear Models.- 3.4 Nonlinear Models.- 3.4.1 Feedforward Neural Networks.- 3.4.2 Recurrent Neural Networks.- 3.5 Density Estimation.- 3.6 Information-Theoretic Approach to Time-Series Modeling: Redundancy Extraction.- 3.6.1 Generalities.- 3.6.2 Unsupervised Learning : Independent Component Analysis for Univariate Time Series.- 3.6.3 Unsupervised Learning: Independent Component Analysis for Multivariate Time Series.- 3.6.4 Supervised Learning : Maximum-Likelihood.- 4 Applications: Parametric Characterization of Time Series.- 4.1 Feedforward Learning : Chaotic Dynamics.- 4.2 Recurrent Learning : Chaotic Dynamics.- 4.3 Dynamical Overtraining and Lyapunov Penalty Term.- 4.4 Feedforward and Recurrent Learning of Biomedical Data.- 4.5 Unsupervised Redundancy-Extraction-Based Modeling: Chaotic Dynamics.- 4.5.1 Univariate Time Series : Mackey-Glass.- 4.5.2 Multivariate Time Series : Taylor-Couette.- 4.6 Unsupervised Redundancy Extraction Modeling: Biomedical Data.- 5 Statistical Structure Extraction in Dynamical Systems: Nonparametric Formulation.- 5.1 Nonparametric Detection ofStatistical Dependencies in Time Series.- 5.1.1 Introduction and Historical Perspective.- 5.1.2 Statistical Independence Measure.- 5.1.3 Statistical Test: The Surrogates Method.- 5.1.4 Nonstationarity.- 5.1.5 A Qualitative Test of Nonlinearity.- 5.2 Nonparametric Characterization of Dynamics: The Information Flow Concept.- 5.2.1 Introduction and Historical Perspective.- 5.2.2 Information Flow for Finite Partitions.- 5.2.3 Information Flow for Infinitesimal Partition.- 5.3 Information Flow and Coarse Graining.- 5.3.1 Generalized Correlation Functions.- 5.3.2 Distinguishing Different Dynamics.- 6 Applications: Nonparametric Characterization of Time Series.- 6.1 Detecting Nonlinear Correlations in Time Series.- 6.1.1 Test ofNonlinearity.- 6.1.2 Testing Predictability: Artificial Time Series.- 6.1.3 Testing Predictability: Real-World Time Series.- 6.1.4 Data Selection.- 6.1.5 Sensitivity Analysis.- 6.2 Nonparametric Analysis of Time Series : Optimal Delay Selection.- 6.2.1 Nonchaotic Deterministic.- 6.2.2 Linear Stochastic.- 6.2.3 Chaotic Deterministic.- 6.3 Determining the Information Flow ofDynamical Systems from Continuous Probability Distributions.- 6.4 Dynamical Characterization ofTime Signals: The Integrated Information Flow.- 6.5 Information Flow and Coarse Graining: Numerical Experiments.- 6.5.1 The Logistic Map.- 6.5.2 White and Colored Noise.- 6.5.3 EEG Signals.- 7 Statistical Structure Extraction in Dynamical Systems: Semiparametric Formulation.- 7.1 Markovian Characterization of Univariate Time Series.- 7.1.1 Measures ofIndependence.- 7.1.2 Markovian Dynamics and Information Flow.- 7.2 Markovian Characterization of Multivariate Time Series.- 7.2.1 Multidimensional Cumulant-Based Measure of Information Flow.- 7.2.2 Nonlinear N-dimensional Markov Models as Approximations ofthe Original Time Series.- 8 Applications: Semiparametric Characterization of Time Series.- 8.1 Univariate Time Series : Artificial Data.- 8.1.1 Autoregressive Models : Linear Correlations.- 8.1.2 Nonlinear Dependencies: Non-Chaos, Chaos, and Noisy Chaos.- 8.2 Univariate Time Series: Real-World Data.- 8.2.1 Monthly Sunspot Numbers.- 8.2.2 The Hidden Dynamics of the Heart Rate Variability.- 8.3 Multivariate Time Series: Artificial Data.- 8.3.1 Autoregressive Time Series.- 8.3.2 Nonlinear Time Series.- 8.3.3 Chaotic Time Series : The Henon Map.- 8.4 Multivariate Time Series : Tumor Detection in EEG Time Series.- 9 Information Processing and Coding in Spatiotemporal Dynamical Systems: Spiking Networks.- 9.1 Spiking Neurons.- 9.1.1 Theoretical Models.- 9.1.2 Rate Coding versus Temporal Coding.- 9.2 Information Processing and Coding in Single Spiking Neurons.- 9.3 Information Processing and Coding in Networks of Spiking Neurons.- 9.4 The Processing and Coding ofDynamical Systems.- 10 Applications: Information Processing and Coding in Spatiotemporal Dynamical Systems.- 10.1 The Binding Problem.- 10.2 Discrimination of Stimulus by Spiking Neural Networks.- 10.2.1 The Task: Visual Stimulus Discrimination.- 10.2.2 The Neural Network: Cortical Architecture.- 10.3 Numerical Experiments.- Epilogue.- Appendix A Chain Rules, Inequalities and Other Useful Theorems in Information Theory.- A.1 Chain Rules.- A.2 Fundamental Inequalities ofInformation Theory.- Appendix B Univariate and Multivariate Cumulants.- Appendix C Information Flow of Chaotic Systems: Thermodynamical Formulation.- Appendix D Generalized Discriminability by the Spike Response Model ofa Single Spiking Neuron: Analytical Results.- References.
Book by Deco Gustavo Schrmann Bernd
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 5,15 per la spedizione in U.S.A.
Destinazione, tempi e costiEUR 3,42 per la spedizione in U.S.A.
Destinazione, tempi e costiDa: Midtown Scholar Bookstore, Harrisburg, PA, U.S.A.
Hardcover. Condizione: Very Good. Very Good - Crisp, clean, unread book with some shelfwear/edgewear, may have a remainder mark - NICE Standard-sized. Codice articolo M0387950478Z2
Quantità: 1 disponibili
Da: Antiquariat Bookfarm, Löbnitz, Germania
Hardcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ancien Exemplaire de bibliothèque avec signature et cachet. BON état, quelques traces d'usure. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. C 1239: (2001) 9780387950471 Sprache: Deutsch Gewicht in Gramm: 500. Codice articolo 2498110
Quantità: 1 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 304. Codice articolo 263066673
Quantità: 4 disponibili
Da: Toscana Books, AUSTIN, TX, U.S.A.
Hardcover. Condizione: new. Excellent Condition.Excels in customer satisfaction, prompt replies, and quality checks. Codice articolo Scanned0387950478
Quantità: 1 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. pp. 304 89 Illus. Codice articolo 5862638
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. pp. 304. Codice articolo 183066683
Quantità: 4 disponibili
Da: Basi6 International, Irving, TX, U.S.A.
Condizione: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Codice articolo ABEJUNE24-342021
Quantità: 1 disponibili
Da: Romtrade Corp., STERLING HEIGHTS, MI, U.S.A.
Condizione: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Codice articolo ABNR-155952
Quantità: 1 disponibili
Da: ALLBOOKS1, Direk, SA, Australia
Codice articolo SHUB342021
Quantità: 1 disponibili
Da: Best Price, Torrance, CA, U.S.A.
Condizione: New. SUPER FAST SHIPPING. Codice articolo 9780387950471
Quantità: 1 disponibili