Articoli correlati a Operational Calculus: A Theory Of Hyperfunctions: 55

Operational Calculus: A Theory Of Hyperfunctions: 55 - Brossura

 
9780387960470: Operational Calculus: A Theory Of Hyperfunctions: 55

Sinossi

In the end of the last century, Oliver Heaviside inaugurated an operational calculus in connection with his researches in electromagnetic theory. In his operational calculus, the operator of differentiation was denoted by the symbol "p". The explanation of this operator p as given by him was difficult to understand and to use, and the range of the valid­ ity of his calculus remains unclear still now, although it was widely noticed that his calculus gives correct results in general. In the 1930s, Gustav Doetsch and many other mathematicians began to strive for the mathematical foundation of Heaviside's operational calculus by virtue of the Laplace transform -pt e f(t)dt. ( However, the use of such integrals naturally confronts restrictions con­ cerning the growth behavior of the numerical function f(t) as t ~ ~. At about the midcentury, Jan Mikusinski invented the theory of con­ volution quotients, based upon the Titchmarsh convolution theorem: If f(t) and get) are continuous functions defined on [O,~) such that the convolution f~ f(t-u)g(u)du =0, then either f(t) =0 or get) =0 must hold. The convolution quotients include the operator of differentiation "s" and related operators. Mikusinski's operational calculus gives a satisfactory basis of Heaviside's operational calculus; it can be applied successfully to linear ordinary differential equations with constant coefficients as well as to the telegraph equation which includes both the wave and heat equa­ tions with constant coefficients.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Contenuti

I. Integration Operator h and Differentiation Operator s (Classes of Hyperfunctions: C and CH).- I. Introduction of the Operator h Through the Convolution Ring C.- 1. Convolution Ring.- 2. Operator of Integration h.- II. Introduction of the Operator s Through the Ring CH.- 3. The Ring CH and the Identity Operator I = h/h.- 4. CH as a Class of Generalized Functions of Hyperfunctions.- 5. Operator of Differentiation s and Operator of Scalar Multiplication [?].- 6. The Theorem $$\frac{I}{{s - [\alpha ]}} = {e^{\alpha t}}$$.- III. Linear Ordinary Differential Equations with Constant Coefficients.- 7. The Conversion of the Initial Value Problem for the Differential Equation into a Hyperfunction Equation.- 8. The Polynomial Ring of Polynomials in s has no Zero Factors.- 9. The Partial Fraction Decomposition of a Rational Function of s.- 10. Hyperfunction Solution of the Ordinary Differential Equation (The Operational Calculus).- 11. Boundary Value Problems for Ordinary Differential Equations.- IV. Fractional Powers of Hyperfunctions h, s and $$\frac{I}{{S - \alpha }}$$.- 12. Euler’s Integrals — The Gamma Function and Beta Function.- 13. Fractional Powers of h, of (s-?)?1, and of (s-?).- V. Hyperfunctions Represented by Infinite Power Series in h.- 14. The Binomial Theorem.- 15. Bessel’s Function Jn(t).- 16. Hyperfunctions Represented by Power Series in h.- II. Linear Ordinary Differential Equations with Linear Coefficients (The Class C/C of Hyperfunctions).- VI. The Titchmarsh Convolution Theorem and the Class C/C.- 17. Proof of the Titchmarsh Convolution Theorem.- 18. The Class C/C of Hyperfunctions.- VII. The Algebraic Derivative Applied to Laplace’s Differential Equation.- 19. The Algebraic Derivative.- 20. Laplace’s Differential Equation.- 21. Supplements. I: Weierstrass’ Polynomial Approximation Theorem. II: Mikusi?ski’s Theorem of Moments.- III. Shift Operator exp(??s) and Diffusion Operator exp(??s1/2).- VIII. Exponential Hyperfunctions exp(??s) and exp(??s1/2).- 22. Shift Operator exp(??s) = e??sFunction Space K = K[0,?).- 23 Hyperfunction-Valued Function f(?) and Generalized Derivative $$\frac{d}{{d\lambda }}f\left( \lambda \right) = f'\left( \lambda \right)$$.- 24. Exponential Hyperfunction exp(?s)=e?s.- 25. Examples of Generalized Limit. Power Series in e?s.- $$\int_{0}^{\infty } {{{e}^{{ - \lambda s}}}} f\left( \lambda \right)d\lambda = \left\{ {f\left( t \right)} \right\}For\left\{ {f\left( t \right)} \right\} \in C$$.- 27. Logarithmic Hyperfunction w and Exponential Hyperfunction exp $$ \left( { - \lambda {{s}^{{1/2}}}} \right) = {{e}^{{ - \lambda {{s}^{{{{1} \left/ {2} \right.}}}}}}} $$.- 28. Logarithmic Hyperfunction w and Exponential Hyperfunction exp(?w).- IV. Applications to Partial Differential Equations.- IX. One DimensionaL Wave Equation.- 29. Hyperfunction Equation of the form f?(?) — w2f(?) = g(?), w ? C/C.- 30. The Vibration of a String.- 31. D’Alembert’s Method.- 32. The Vibration of an Infinitely Long String.- X. Telegraph Equation.- 33. The Hyperfunction Equation of the Telegraph Equation.- 34. A Cable With Infinitely Small Loss.- X. (cont.).- 35. Conductance Without Deformation.- 36. The Thomson Cable.- 37. Concrete Representations of exp $$\left( { - \lambda \sqrt {\alpha s + \beta } } \right) $$.- 38. A Cable without Self-Induction.- 39. A Cable without Leak-Conductance.- 40. The Case Where All the Four Parameters Are Positive.- Positive.- XI. Heat Equation.- 41. The Temperature of a Heat-Conducting Bar.- 42. An Infinitely Long Bar.- 43. A Bar Without an Outgoing Flow of Heat.- 44. The Temperature in a Bar with a Given Initial Temperature.- 45. A Heat-Conducting Ring.- 46. Non-Insulated Heat Conduction.- Answers to Exercises.- Formulas and Tables.- References.- Propositions and Theorems in Sections.

Product Description

Book by Yosida Kosaku

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: molto buono
Type: Book N.B. Small plain label...
Visualizza questo articolo

EUR 14,46 per la spedizione da Regno Unito a Italia

Destinazione, tempi e costi

GRATIS per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9783540960478: Operational Calculus

Edizione in evidenza

ISBN 10:  3540960473 ISBN 13:  9783540960478
Brossura

Risultati della ricerca per Operational Calculus: A Theory Of Hyperfunctions: 55

Foto dell'editore

Yosida,
Editore: Springer, 1984
ISBN 10: 0387960473 ISBN 13: 9780387960470
Nuovo Brossura

Da: Basi6 International, Irving, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Codice articolo ABEJUNE24-343467

Contatta il venditore

Compra nuovo

EUR 44,63
Convertire valuta
Spese di spedizione: GRATIS
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Yosida,
Editore: Springer, 1984
ISBN 10: 0387960473 ISBN 13: 9780387960470
Nuovo Brossura

Da: Romtrade Corp., STERLING HEIGHTS, MI, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Codice articolo ABNR-157370

Contatta il venditore

Compra nuovo

EUR 44,75
Convertire valuta
Spese di spedizione: GRATIS
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

K?saku Yosida
Editore: Springer, 1984
ISBN 10: 0387960473 ISBN 13: 9780387960470
Nuovo Brossura

Da: Books Puddle, New York, NY, U.S.A.

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. pp. 188. Codice articolo 263110650

Contatta il venditore

Compra nuovo

EUR 46,39
Convertire valuta
Spese di spedizione: EUR 7,75
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Yosida, Kosaku
Editore: Springer, 1984
ISBN 10: 0387960473 ISBN 13: 9780387960470
Antico o usato Paperback

Da: Fireside Bookshop, Stroud, GLOS, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Very Good. Type: Book N.B. Small plain label to inside front cover. Light rubbing to corners of covers. Codice articolo 057791

Contatta il venditore

Compra usato

EUR 41,69
Convertire valuta
Spese di spedizione: EUR 14,46
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Yosida K?saku
Editore: Springer, 1984
ISBN 10: 0387960473 ISBN 13: 9780387960470
Nuovo Brossura

Da: Biblios, Frankfurt am main, HESSE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. pp. 188. Codice articolo 183110640

Contatta il venditore

Compra nuovo

EUR 48,70
Convertire valuta
Spese di spedizione: EUR 7,95
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Yosida K?saku
Editore: Springer, 1984
ISBN 10: 0387960473 ISBN 13: 9780387960470
Nuovo Brossura

Da: Majestic Books, Hounslow, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. pp. 188 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Codice articolo 5818661

Contatta il venditore

Compra nuovo

EUR 46,78
Convertire valuta
Spese di spedizione: EUR 10,23
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Kosaku Yosida
Editore: Springer New York, 1984
ISBN 10: 0387960473 ISBN 13: 9780387960470
Nuovo Brossura
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. In the end of the last century, Oliver Heaviside inaugurated an operational calculus in connection with his researches in electromagnetic theory. In his operational calculus, the operator of differentiation was denoted by the symbol p . The explanation of . Codice articolo 5912644

Contatta il venditore

Compra nuovo

EUR 48,37
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Kosaku Yosida
ISBN 10: 0387960473 ISBN 13: 9780387960470
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In the end of the last century, Oliver Heaviside inaugurated an operational calculus in connection with his researches in electromagnetic theory. In his operational calculus, the operator of differentiation was denoted by the symbol 'p'. The explanation of this operator p as given by him was difficult to understand and to use, and the range of the valid ity of his calculus remains unclear still now, although it was widely noticed that his calculus gives correct results in general. In the 1930s, Gustav Doetsch and many other mathematicians began to strive for the mathematical foundation of Heaviside's operational calculus by virtue of the Laplace transform -pt e f(t)dt. ( However, the use of such integrals naturally confronts restrictions con cerning the growth behavior of the numerical function f(t) as t ~ ~. At about the midcentury, Jan Mikusinski invented the theory of con volution quotients, based upon the Titchmarsh convolution theorem: If f(t) and get) are continuous functions defined on [O,~) such that the convolution f~ f(t-u)g(u)du =0, then either f(t) =0 or get) =0 must hold. The convolution quotients include the operator of differentiation 's' and related operators. Mikusinski's operational calculus gives a satisfactory basis of Heaviside's operational calculus; it can be applied successfully to linear ordinary differential equations with constant coefficients as well as to the telegraph equation which includes both the wave and heat equa tions with constant coefficients. 184 pp. Englisch. Codice articolo 9780387960470

Contatta il venditore

Compra nuovo

EUR 53,49
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Yosida, Kosaku:
ISBN 10: 0387960473 ISBN 13: 9780387960470
Antico o usato Broschiert

Da: Antiquariat Bernhardt, Kassel, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Broschiert. Condizione: Sehr gut. Applied Mathematical Sciences, Band 55. Zust: Gutes Exemplar. X, 170 Seiten, Englisch 274g. Codice articolo 493408

Contatta il venditore

Compra usato

EUR 58,50
Convertire valuta
Spese di spedizione: EUR 9,95
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Kosaku Yosida
ISBN 10: 0387960473 ISBN 13: 9780387960470
Nuovo Taschenbuch

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Neuware -In the end of the last century, Oliver Heaviside inaugurated an operational calculus in connection with his researches in electromagnetic theory. In his operational calculus, the operator of differentiation was denoted by the symbol 'p'. The explanation of this operator p as given by him was difficult to understand and to use, and the range of the valid ity of his calculus remains unclear still now, although it was widely noticed that his calculus gives correct results in general. In the 1930s, Gustav Doetsch and many other mathematicians began to strive for the mathematical foundation of Heaviside's operational calculus by virtue of the Laplace transform -pt e f(t)dt. ( However, the use of such integrals naturally confronts restrictions con cerning the growth behavior of the numerical function f(t) as t ~ ~. At about the midcentury, Jan Mikusinski invented the theory of con volution quotients, based upon the Titchmarsh convolution theorem: If f(t) and get) are continuous functions defined on [O,~) such that the convolution f~ f(t-u)g(u)du =0, then either f(t) =0 or get) =0 must hold. The convolution quotients include the operator of differentiation 's' and related operators. Mikusinski's operational calculus gives a satisfactory basis of Heaviside's operational calculus; it can be applied successfully to linear ordinary differential equations with constant coefficients as well as to the telegraph equation which includes both the wave and heat equa tions with constant coefficients.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 184 pp. Englisch. Codice articolo 9780387960470

Contatta il venditore

Compra nuovo

EUR 53,49
Convertire valuta
Spese di spedizione: EUR 15,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Vedi altre 7 copie di questo libro

Vedi tutti i risultati per questo libro