Articoli correlati a Modern Geometry-Methods and Applications: Part Ii,...

Modern Geometry-Methods and Applications: Part Ii, the Geometry and Topology of Manifolds: 104 - Rilegato

 
9780387961620: Modern Geometry-Methods and Applications: Part Ii, the Geometry and Topology of Manifolds: 104

Sinossi

Up until recently, Riemannian geometry and basic topology were not included, even by departments or faculties of mathematics, as compulsory subjects in a university-level mathematical education. The standard courses in the classical differential geometry of curves and surfaces which were given instead (and still are given in some places) have come gradually to be viewed as anachronisms. However, there has been hitherto no unanimous agreement as to exactly how such courses should be brought up to date, that is to say, which parts of modern geometry should be regarded as absolutely essential to a modern mathematical education, and what might be the appropriate level of abstractness of their exposition. The task of designing a modernized course in geometry was begun in 1971 in the mechanics division of the Faculty of Mechanics and Mathematics of Moscow State University. The subject-matter and level of abstractness of its exposition were dictated by the view that, in addition to the geometry of curves and surfaces, the following topics are certainly useful in the various areas of application of mathematics (especially in elasticity and relativity, to name but two), and are therefore essential: the theory of tensors (including covariant differentiation of them); Riemannian curvature; geodesics and the calculus of variations (including the conservation laws and Hamiltonian formalism); the particular case of skew-symmetric tensors (i. e.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Contenuti

1 Examples of Manifolds.- §1. The concept of a manifold.- 1.1. Definition of a manifold.- 1.2. Mappings of manifolds; tensors on manifolds.- 1.3. Embeddings and immersions of manifolds. Manifolds with boundary.- §2. The simplest examples of manifolds.- 2.1. Surfaces in Euclidean space. Transformation groups as manifolds.- 2.2. Projective spaces.- 2.3. Exercises.- §3. Essential facts from the theory of Lie groups.- 3.1. The structure of a neighbourhood of the identity of a Lie group. The Lie algebra of a Lie group. Semisimplicity.- 3.2. The concept of a linear representation. An example of a non-matrix Lie group.- §4. Complex manifolds.- 4.1. Definitions and examples.- 4.2. Riemann surfaces as manifolds.- §5. The simplest homogeneous spaces.- 5.1. Action of a group on a manifold.- 5.2. Examples of homogeneous spaces.- 5.3. Exercises.- §6. Spaces of constant curvature (symmetric spaces).- 6.1. The concept of a symmetric space.- 6.2. The isometry group of a manifold. Properties of its Lie algebra.- 6.3. Symmetric spaces of the first and second types.- 6.4. Lie groups as symmetric spaces.- 6.5. Constructing symmetric spaces. Examples.- 6.6. Exercises.- §7. Vector bundles on a manifold.- 7.1. Constructions involving tangent vectors.- 7.2. The normal vector bundle on a submanifold.- 2 Foundational Questions. Essential Facts Concerning Functions on a Manifold. Typical Smooth Mappings.- §8. Partitions of unity and their applications.- 8.1. Partitions of unity.- 8.2. The simplest applications of partitions of unity. Integrals over a manifold and the general Stokes formula.- 8.3. Invariant metrics.- §9. The realization of compact manifolds as surfaces in ?N.- §10. Various properties of smooth maps of manifolds.- 10.1. Approximation of continuous mappings by smooth ones.- 10.2. Sard’s theorem.- 10.3. Transversal regularity.- 10.4. Morse functions 86 §.- 11. Applications of Sard’s theorem.- 11.1. The existence of embeddings and immersions.- 11.2. The construction of Morse functions as height functions.- 11.3. Focal points.- 3 The Degree of a Mapping. The Intersection Index of Submanifolds. Applications.- §12. The concept of homotopy.- 12.1. Definition of homotopy. Approximation of continuous maps and homotopies by smooth ones.- 12.2. Relative homotopies.- §13. The degree of a map.- 13.1. Definition of degree.- 13.2. Generalizations of the concept of degree.- 13.3. Classification of homotopy classes of maps from an arbitrary manifold to a sphere.- 13.4. The simplest examples.- §14. Applications of the degree of a mapping.- 14.1. The relationship between degree and integral.- 14.2. The degree of a vector field on a hypersurface.- 14.3. The Whitney number. The Gauss-Bonnet formula.- 14.4. The index of a singular point of a vector field.- 14.5. Transverse surfaces of a vector field. The Poincaré-Bendixson theorem.- §15. The intersection index and applications.- 15.1. Definition of the intersection index.- 15.2. The total index of a vector field.- 15.3. The signed number of fixed points of a self-map (the Lefschetz number). The Brouwer fixed-point theorem.- 15.4. The linking coefficient.- 4 Orientability of Manifolds. The Fundamental Group. Covering Spaces (Fibre Bundles with Discrete Fibre).- §16. Orientability and homotopies of closed paths.- 16.1. Transporting an orientation along a path.- 16.2. Examples of non-orientable manifolds.- §17. The fundamental group.- 17.1. Definition of the fundamental group.- 17.2. The dependence on the base point.- 17.3. Free homotopy classes of maps of the circle.- 17.4. Homotopic equivalence.- 17.5. Examples.- 17.6. The fundamental group and orientability.- §18. Covering maps and covering homotopies.- 18.1. The definition and basic properties of covering spaces.- 18.2. The simplest examples. The universal covering.- 18.3. Branched coverings. Riemann surfaces.- 18.4. Covering maps and discrete groups of transformations.- §19. Covering maps and the fundamental group. Computation of the fundamental group of certain manifolds.- 19.1. Monodromy.- 19.2. Covering maps as an aid in the calculation of fundamental groups.- 19.3. The simplest of the homology groups.- 19.4. Exercises.- §20. The discrete groups of motions of the Lobachevskian plane.- 5 Homotopy Groups.- §21. Definition of the absolute and relative homotopy groups. Examples.- 21.1. Basic definitions.- 21.2. Relative homotopy groups. The exact sequence of a pair.- §22. Covering homotopies. The homotopy groups of covering spaces and loop spaces.- 22.1. The concept of a fibre space.- 22.2. The homotopy exact sequence of a fibre space.- 22.3. The dependence of the homotopy groups on the base point.- 22.4. The case of Lie groups.- 22.5. Whitehead multiplication.- §23. Facts concerning the homotopy groups of spheres. Framed normal bundles. The Hopf invariant.- 23.1. Framed normal bundles and the homotopy groups of spheres.- 23.2. The suspension map.- 23.3. Calculation of the groups ?n+1(Sn).- 23.4. The groups ?n+2(Sn).- 6 Smooth Fibre Bundles.- §24. The homotopy theory of fibre bundles.- 24.1. The concept of a smooth fibre bundle.- 24.2. Connexions.- 24.3. Computation of homotopy groups by means of fibre bundles.- 24.4. The classification of fibre bundles.- 24.5. Vector bundles and operations on them.- 24.6. Meromorphic functions.- 24.7. The Picard-Lefschetz formula.- §25. The differential geometry of fibre bundles.- 25.1. G-connexions on principal fibre bundles.- 25.2. G-connexions on associated fibre bundles. Examples.- 25.3. Curvature.- 25.4. Characteristic classes: Constructions.- 25.5. Characteristic classes: Enumeration.- §26. Knots and links. Braids.- 26.1. The group of a knot.- 26.2. The Alexander polynomial of a knot.- 26.3. The fibre bundle associated with a knot.- 26.4. Links.- 26.5. Braids.- 7 Some Examples of Dynamical Systems and Foliations on Manifolds.- §27. The simplest concepts of the qualitative theory of dynamical systems. Two-dimensional manifolds.- 27.1. Basic definitions.- 27.2. Dynamical systems on the torus.- §28. Hamiltonian systems on manifolds. Liouville’s theorem. Examples.- 28.1. Hamiltonian systems on cotangent bundles.- 28.2. Hamiltonian systems on symplectic manifolds. Examples.- 28.3. Geodesic flows.- 28.4. Liouville’s theorem.- 28.5. Examples.- §29. Foliations.- 29.1. Basic definitions.- 29.2. Examples of foliations of codimension 1.- §30. Variational problems involving higher derivatives.- 30.1. Hamiltonian formalism.- 30.2. Examples.- 30.3. Integration of the commutativity equations. The connexion with the Kovalevskaja problem. Finite-zoned periodic potentials.- 30.4. The Korteweg-deVries equation. Its interpretation as an infinite-dimensional Hamiltonian system.- 30.5 Hamiltonian formalism of field systems.- 8 The Global Structure of Solutions of Higher-Dimensional Variational Problems.- §31. Some manifolds arising in the general theory of relativity (GTR).- 31.1. Statement of the problem.- 31.2. Spherically symmetric solutions.- 31.3. Axially symmetric solutions.- 31.4. Cosmological models.- 31.5. Friedman’s models.- 31.6. Anisotropic vacuum models.- 31.7. More general models.- §32. Some examples of global solutions of the Yang-Mills equations. Chiral fields.- 32.1. General remarks. Solutions of monopole type.- 32.2. The duality equation.- 32.3. Chiral fields. The Dirichlet integral.- §33. The minimality of complex submanifolds.

Product Description

Book by Dubrovin BA Fomenko AT Novikov SP

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

  • EditoreSpringer Verlag
  • Data di pubblicazione1985
  • ISBN 10 0387961623
  • ISBN 13 9780387961620
  • RilegaturaCopertina rigida
  • LinguaInglese
  • Numero di pagine452

Compra usato

Condizioni: buono
LIGHTNING FAST SHIPPING! Hardback...
Visualizza questo articolo

EUR 7,06 per la spedizione in U.S.A.

Destinazione, tempi e costi

Risultati della ricerca per Modern Geometry-Methods and Applications: Part Ii,...

Foto dell'editore

Dubrovin, B.A.; Fomenko, A.T.; Novikov, S.P.
Editore: Springer, 1985
ISBN 10: 0387961623 ISBN 13: 9780387961620
Antico o usato Rilegato

Da: Bulrushed Books, Moscow, ID, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: Good. LIGHTNING FAST SHIPPING! Hardback, in good condition. Pages have scattered marks and notes, binding is good, cover is clean. A solid reading copy. ~ Ships Fast! Codice articolo #133C-0157

Contatta il venditore

Compra usato

EUR 46,72
Convertire valuta
Spese di spedizione: EUR 7,06
In U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Dubrovin, B. A., Novikov, S. P., Fomenko, A. T.
Editore: Springer New York, 1985
ISBN 10: 0387961623 ISBN 13: 9780387961620
Antico o usato Rilegato

Da: Better World Books, Mishawaka, IN, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Used book that is in almost brand-new condition. Codice articolo 18896804-6

Contatta il venditore

Compra usato

EUR 55,54
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Novikov, S.P.
Editore: Springer, 1985
ISBN 10: 0387961623 ISBN 13: 9780387961620
Antico o usato Rilegato

Da: WorldofBooks, Goring-By-Sea, WS, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardback. Condizione: Very Good. The book has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged. Codice articolo GOR014289724

Contatta il venditore

Compra usato

EUR 59,86
Convertire valuta
Spese di spedizione: EUR 6,59
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Dubrovin, B.A. and Burns, RG (Trans)
Editore: Springer, 1985
ISBN 10: 0387961623 ISBN 13: 9780387961620
Antico o usato Rilegato

Da: Anybook.com, Lincoln, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: Good. Volume 2. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. In good all round condition. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,850grams, ISBN:9780387961620. Codice articolo 9789718

Contatta il venditore

Compra usato

EUR 53,93
Convertire valuta
Spese di spedizione: EUR 13,98
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Dubrovin, B.A.; Fomenko, A.T.; Novikov, S.P.
Editore: Springer, 1985
ISBN 10: 0387961623 ISBN 13: 9780387961620
Nuovo Rilegato

Da: Lucky's Textbooks, Dallas, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo ABLIING23Feb2215580174707

Contatta il venditore

Compra nuovo

EUR 92,49
Convertire valuta
Spese di spedizione: EUR 3,52
In U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

B. A. Dubrovin
ISBN 10: 0387961623 ISBN 13: 9780387961620
Nuovo Rilegato
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Up until recently, Riemannian geometry and basic topology were not included, even by departments or faculties of mathematics, as compulsory subjects in a university-level mathematical education. The standard courses in the classical differential geometry of curves and surfaces which were given instead (and still are given in some places) have come gradually to be viewed as anachronisms. However, there has been hitherto no unanimous agreement as to exactly how such courses should be brought up to date, that is to say, which parts of modern geometry should be regarded as absolutely essential to a modern mathematical education, and what might be the appropriate level of abstractness of their exposition. The task of designing a modernized course in geometry was begun in 1971 in the mechanics division of the Faculty of Mechanics and Mathematics of Moscow State University. The subject-matter and level of abstractness of its exposition were dictated by the view that, in addition to the geometry of curves and surfaces, the following topics are certainly useful in the various areas of application of mathematics (especially in elasticity and relativity, to name but two), and are therefore essential: the theory of tensors (including covariant differentiation of them); Riemannian curvature; geodesics and the calculus of variations (including the conservation laws and Hamiltonian formalism); the particular case of skew-symmetric tensors (i. e. 452 pp. Englisch. Codice articolo 9780387961620

Contatta il venditore

Compra nuovo

EUR 74,85
Convertire valuta
Spese di spedizione: EUR 23,00
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Dubrovin, B.A.; Fomenko, A.T.; Novikov, S.P.
Editore: Springer, 1985
ISBN 10: 0387961623 ISBN 13: 9780387961620
Nuovo Rilegato

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In English. Codice articolo ria9780387961620_new

Contatta il venditore

Compra nuovo

EUR 84,27
Convertire valuta
Spese di spedizione: EUR 14,09
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

B. A. Dubrovin
ISBN 10: 0387961623 ISBN 13: 9780387961620
Nuovo Rilegato

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Up until recently, Riemannian geometry and basic topology were not included, even by departments or faculties of mathematics, as compulsory subjects in a university-level mathematical education. The standard courses in the classical differential geometry of curves and surfaces which were given instead (and still are given in some places) have come gradually to be viewed as anachronisms. However, there has been hitherto no unanimous agreement as to exactly how such courses should be brought up to date, that is to say, which parts of modern geometry should be regarded as absolutely essential to a modern mathematical education, and what might be the appropriate level of abstractness of their exposition. The task of designing a modernized course in geometry was begun in 1971 in the mechanics division of the Faculty of Mechanics and Mathematics of Moscow State University. The subject-matter and level of abstractness of its exposition were dictated by the view that, in addition to the geometry of curves and surfaces, the following topics are certainly useful in the various areas of application of mathematics (especially in elasticity and relativity, to name but two), and are therefore essential: the theory of tensors (including covariant differentiation of them); Riemannian curvature; geodesics and the calculus of variations (including the conservation laws and Hamiltonian formalism); the particular case of skew-symmetric tensors (i. e. Codice articolo 9780387961620

Contatta il venditore

Compra nuovo

EUR 78,24
Convertire valuta
Spese di spedizione: EUR 32,19
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

B.A. Dubrovin|A.T. Fomenko|S.P. Novikov
Editore: Springer New York, 1985
ISBN 10: 0387961623 ISBN 13: 9780387961620
Nuovo Rilegato
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Up until recently, Riemannian geometry and basic topology were not included, even by departments or faculties of mathematics, as compulsory subjects in a university-level mathematical education. The standard courses in the classical differential geometry of. Codice articolo 5912673

Contatta il venditore

Compra nuovo

EUR 64,31
Convertire valuta
Spese di spedizione: EUR 48,99
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

B. A. Dubrovin
ISBN 10: 0387961623 ISBN 13: 9780387961620
Nuovo Rilegato
Print on Demand

Da: THE SAINT BOOKSTORE, Southport, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 837. Codice articolo C9780387961620

Contatta il venditore

Compra nuovo

EUR 97,18
Convertire valuta
Spese di spedizione: EUR 17,79
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Vedi altre 3 copie di questo libro

Vedi tutti i risultati per questo libro