If you place a large number of points randomly in the unit square, what is the distribution of the radius of the largest circle containing no points? Of the smallest circle containing 4 points? Why do Brownian sample paths have local maxima but not points of increase, and how nearly do they have points of increase? Given two long strings of letters drawn i. i. d. from a finite alphabet, how long is the longest consecutive (resp. non-consecutive) substring appearing in both strings? If an imaginary particle performs a simple random walk on the vertices of a high-dimensional cube, how long does it take to visit every vertex? If a particle moves under the influence of a potential field and random perturbations of velocity, how long does it take to escape from a deep potential well? If cars on a freeway move with constant speed (random from car to car), what is the longest stretch of empty road you will see during a long journey? If you take a large i. i. d. sample from a 2-dimensional rotationally-invariant distribution, what is the maximum over all half-spaces of the deviation between the empirical and true distributions? These questions cover a wide cross-section of theoretical and applied probability. The common theme is that they all deal with maxima or min ima, in some sense.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
A The Heuristic.- B Markov Chain Hitting Times.- C Extremes of Stationary Processes.- D Extremes of Locally Brownian Processes.- E Simple Combinatorics.- F Combinatorics for Processes.- G Exponential Combinatorial Extrema.- H Stochastic Geometry.- I Multi-Dimensional Diffusions.- J Random Fields.- K Brownian Motion: Local Distributions.- L Miscellaneous Examples.- M The Eigenvalue Method.- Postscript.
Applied Mathematical Sciencees 77. Volume Rilegato Di Pp. Xv-269, In Ottimo Satto. Spedizione In 24 Ore Dalla Conferma Dell'Ordine.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 5,90 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: Better World Books Ltd, Dunfermline, Regno Unito
Condizione: Very Good. Ships from the UK. Former library book; may include library markings. Used book that is in excellent condition. May show signs of wear or have minor defects. Codice articolo 5558759-6
Quantità: 1 disponibili
Da: Better World Books: West, Reno, NV, U.S.A.
Condizione: Very Good. Used book that is in excellent condition. May show signs of wear or have minor defects. Codice articolo 11462036-6
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Gebunden. Condizione: New. If you place a large number of points randomly in the unit square, what is the distribution of the radius of the largest circle containing no points? Of the smallest circle containing 4 points? Why do Brownian sample paths have local maxima but not points o. Codice articolo 458432905
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9780387968995_new
Quantità: Più di 20 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Hardback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 616. Codice articolo C9780387968995
Quantità: Più di 20 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Feb2215580174899
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 292. Codice articolo 262170630
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND pp. 292. Codice articolo 182170636
Quantità: 4 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Buch. Condizione: Neu. Neuware - If you place a large number of points randomly in the unit square, what is the distribution of the radius of the largest circle containing no points Of the smallest circle containing 4 points Why do Brownian sample paths have local maxima but not points of increase, and how nearly do they have points of increase Given two long strings of letters drawn i. i. d. from a finite alphabet, how long is the longest consecutive (resp. non-consecutive) substring appearing in both strings If an imaginary particle performs a simple random walk on the vertices of a high-dimensional cube, how long does it take to visit every vertex If a particle moves under the influence of a potential field and random perturbations of velocity, how long does it take to escape from a deep potential well If cars on a freeway move with constant speed (random from car to car), what is the longest stretch of empty road you will see during a long journey If you take a large i. i. d. sample from a 2-dimensional rotationally-invariant distribution, what is the maximum over all half-spaces of the deviation between the empirical and true distributions These questions cover a wide cross-section of theoretical and applied probability. The common theme is that they all deal with maxima or min ima, in some sense. Codice articolo 9780387968995
Quantità: 2 disponibili
Da: dsmbooks, Liverpool, Regno Unito
Hardcover. Condizione: Like New. Like New. book. Codice articolo D7F9-0-M-0387968997-6
Quantità: 1 disponibili