Depth Perception in Frogs and Toads provides a comprehensive exploration of the phenomenon of depth perception in frogs and toads, as seen from a neuro-computational point of view. Perhaps the most important feature of the book is the development and presentation of two neurally realizable depth perception algorithms that utilize both monocular and binocular depth cues in a cooperative fashion. One of these algorithms is specialized for computation of depth maps for navigation, and the other for the selection and localization of a single prey for prey catching. The book is also unique in that it thoroughly reviews the known neuroanatomical, neurophysiological and behavioral data, and then synthesizes, organizes and interprets that information to explain a complex sensory-motor task. The book will be of special interest to that segment of the neural computing community interested in understanding natural neurocomputational structures, particularly to those working in perception and sensory-motor coordination. It will also be of interest to neuroscientists interested in exploring the complex interactions between the neural substrates that underly perception and behavior.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
1 Introduction.- 2 Modeling Depth Perception in Frogs and Toads.- 2.1 Previous Models of Depth Perception.- 2.2 Depth Perception in Frogs and Toads.- 2.2.1 The role of depth perception in detour behavior.- 2.2.2 Monocular and binocular depth cues.- 2.3 Anatomy and Physiology.- 2.3.1 The eyes.- 2.3.2 Optic nerve projection sites.- 2.3.3 Nucleus isthmi ― a source of binocular input to tectum.- 2.3.4 Binocular units in tectum and thalamus.- 2.3.5 Efferent pathways from tectum and thalamus.- 2.4 Functional Analysis of the Major Visuomotor Centers.- 2.4.1 Retina.- 2.4.2 Functions of thalamus and tectum.- 2.4.3 Evidence for depth perception in thalamus.- 2.4.4 Motor pathways from tectum and thalamus.- 2.4.5 Depth perception dissociated from orientation.- 2.4.6 Depth Maps, Motor activity and tectal retinotopy.- 2.4.7 Summary of the frog/toad visual system.- 2.5 Modeling Assumptions.- 2.6 Conclusions.- 3 Monocular and Binocular Cooperation.- 3.1 Design of the Model.- 3.1.1 Structure.- 3.1.2 Constraints.- 3.1.3 Coordinate systems.- 3.1.4 Computational scheme.- 3.2 Methods.- 3.2.1 Computer simulation.- 3.2.2 Visual input.- 3.3 Results.- 3.3.1 Initial validation.- 3.3.2 Effect of lateral excitatory spread.- 3.3.3 Depth segmentation.- 3.3.4 Effects of lenses and prisms.- 3.3.5 Barrier depth resolution.- 3.3.6 Monocular response.- 3.4 Discussion.- 4 Localization of Prey.- 4.0.1 Background.- 4.0.2 Model overview.- 4.1 Methods.- 4.1.1 Computer simulation.- 4.1.2 Mathematical description for the simulation.- 4.1.3 Graphical displays.- 4.1.4 Depth estimate categories.- 4.1.5 Visual input.- 4.2 Results.- 4.2.1 Experiments with single-prey stimuli.- 4.2.2 Experiments with multiple-prey stimuli.- 4.2.3 The effect of lenses on two-prey experiments.- 4.3 Discussion.- 4.3.1 A possible neural realization of the model.- 4.3.2 Suitability of the nucleus isthmi as a tecto-tectal relay for depth perception.- 4.3.3 Evaluation of the model.- 5 Towards a Complete Model.- 5.1 The Cue Interaction and Prey Localization Models.- 5.1.1 Unities.- 5.1.2 Diversities.- 5.1.3 A synthesis.- 5.2 An Extended Model of Accommodation Control.- 5.3 Experimental Verification of the Models’ Depth Scale.- 5.4 Discussion.- 6 Conclusions.- 6.1 The Models and their Contributions.- 6.2 Suggestions for Animal Experiments.- 6.3 Suggestions for Robotic Algorithms.- A Modeling and Simulation Details.- A.1 Representation of a Neural Unit.- A.2 Representation of a Neural Layer.- A.3 Numerical Methods.- A.4 The Cue Interaction Model.- A.5 The Prey Localization Model.- B Simulation Optics.- B.1 Optical Geometry.- B.2 Representation of Prisms.- B.3 Retinal Projections.- B.4 Disparity Input Planes.- B.5 Accommodation Input Planes.- B.6 Representation of Lenses.- B.7 Conversion from Internal to External Coordinates.- B.8 Nominal Parameter Settings.
Book by House Donald
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 28,98 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: moluna, Greven, Germania
Kartoniert / Broschiert. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Depth Perception in Frogs and Toads provides a comprehensive exploration of the phenomenon of depth perception in frogs and toads, as seen from a neuro-computational point of view. Perhaps the most important feature of the book is the development and. Codice articolo 5912930
Quantità: Più di 20 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Depth Perception in Frogs and Toads provides a comprehensive exploration of the phenomenon of depth perception in frogs and toads, as seen from a neuro-computational point of view. Perhaps the most important feature of the book is the development and presentation of two neurally realizable depth perception algorithms that utilize both monocular and binocular depth cues in a cooperative fashion. One of these algorithms is specialized for computation of depth maps for navigation, and the other for the selection and localization of a single prey for prey catching. The book is also unique in that it thoroughly reviews the known neuroanatomical, neurophysiological and behavioral data, and then synthesizes, organizes and interprets that information to explain a complex sensory-motor task. The book will be of special interest to that segment of the neural computing community interested in understanding natural neurocomputational structures, particularly to those working in perception and sensory-motor coordination. It will also be of interest to neuroscientists interested in exploring the complex interactions between the neural substrates that underly perception and behavior.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 152 pp. Englisch. Codice articolo 9780387971575
Quantità: 1 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Depth Perception in Frogs and Toads provides a comprehensive exploration of the phenomenon of depth perception in frogs and toads, as seen from a neuro-computational point of view. Perhaps the most important feature of the book is the development and presentation of two neurally realizable depth perception algorithms that utilize both monocular and binocular depth cues in a cooperative fashion. One of these algorithms is specialized for computation of depth maps for navigation, and the other for the selection and localization of a single prey for prey catching. The book is also unique in that it thoroughly reviews the known neuroanatomical, neurophysiological and behavioral data, and then synthesizes, organizes and interprets that information to explain a complex sensory-motor task. The book will be of special interest to that segment of the neural computing community interested in understanding natural neurocomputational structures, particularly to those working in perception and sensory-motor coordination. It will also be of interest to neuroscientists interested in exploring the complex interactions between the neural substrates that underly perception and behavior. 152 pp. Englisch. Codice articolo 9780387971575
Quantità: 2 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9780387971575_new
Quantità: Più di 20 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Depth Perception in Frogs and Toads provides a comprehensive exploration of the phenomenon of depth perception in frogs and toads, as seen from a neuro-computational point of view. Perhaps the most important feature of the book is the development and presentation of two neurally realizable depth perception algorithms that utilize both monocular and binocular depth cues in a cooperative fashion. One of these algorithms is specialized for computation of depth maps for navigation, and the other for the selection and localization of a single prey for prey catching. The book is also unique in that it thoroughly reviews the known neuroanatomical, neurophysiological and behavioral data, and then synthesizes, organizes and interprets that information to explain a complex sensory-motor task. The book will be of special interest to that segment of the neural computing community interested in understanding natural neurocomputational structures, particularly to those working in perception and sensory-motor coordination. It will also be of interest to neuroscientists interested in exploring the complex interactions between the neural substrates that underly perception and behavior. Codice articolo 9780387971575
Quantità: 1 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 284. Codice articolo C9780387971575
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 152. Codice articolo 263871235
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 152 67:B&W 6.69 x 9.61 in or 244 x 170 mm (Pinched Crown) Perfect Bound on White w/Gloss Lam. Codice articolo 5025244
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND pp. 152. Codice articolo 183871241
Quantità: 4 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 1st edition. 135 pages. 9.75x6.50x0.50 inches. In Stock. Codice articolo x-0387971572
Quantità: 2 disponibili