Artificial Neural Networks for Computer Vision (Research Notes in Neural Computing): 5 - Brossura

Zhou, Yi-Tong

 
9780387976839: Artificial Neural Networks for Computer Vision (Research Notes in Neural Computing): 5

Sinossi

This book describes artificial neural network (ANN) based algorithms for early vision. The book focuses on several important early vision problems such as static and motion stereo, motion estimation and restoration, and emphasizes finding effective solutions to these problems, using the ANN. Many practical real time image data are provided. Although the book is written for researchers and engineers, it provides a fairly complete and readable introduction to both neural networks and computer vision. Readers can also expect to derive a better understanding of the interaction between these two fields.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Contenuti

1 Introduction.- 1.1 Neural Methods.- 1.2 Plan of the Book.- 2 Computational Neural Networks.- 2.1 Introduction.- 2.2 Amari and Hopfield Networks.- 2.3 A Discrete Neural Network for Vision.- 2.3.1 A Discrete Network.- 2.3.2 Decision Rules.- 2.4 Discussion.- 3 Static Stereo.- 3.1 Introduction.- 3.2 Depth from Two Views.- 3.3 Estimation of Intensity Derivatives.- 3.3.1 Fitting Data Using Chebyshev Polynomials.- 3.3.2 Analysis of Filter M(y).- 3.3.3 Computational Consideration for the Natural Images.- 3.4 Matching Using a Network.- 3.5 Experimental Results.- 3.5.1 Random Dot Stereograms.- 3.5.2 Natural Stereo Images.- 3.6 Discussion.- 4 Motion Stereo—Lateral Motion.- 4.1 Introduction.- 4.2 Depth from Lateral Motion.- 4.3 Estimation of Measurement Primitives.- 4.3.1 Estimation of Derivatives.- 4.3.2 Estimation of Chamfer Distance Values.- 4.4 Batch Approach.- 4.4.1 Estimation of Pixel Positions.- 4.4.2 Batch Formulation.- 4.5 Recursive Approach.- 4.6 Matching Error.- 4.7 Detection of Occluding Pixels.- 4.8 Experimental Results.- 4.9 Discussion.- 5 Motion Stereo—Longitudinal Motion.- 5.1 Introduction.- 5.2 Depth from Forward Motion.- 5.2.1 General Case: Images Are Nonequally Spaced.- 5.2.2 Special Case: Images Are Equally Spaced.- 5.3 Estimation of the Gabor Features.- 5.3.1 Gabor Correlation Operator.- 5.3.2 Computational Considerations.- 5.4 Neural Network Formulation.- 5.5 Experimental Results.- 5.6 Discussion.- 6 Computation of Optical Flow.- 6.1 Introduction.- 6.2 Estimation of Intensity Values and Principal Curvatures.- 6.2.1 Estimation of Polynomial Coefficients.- 6.2.2 Computing Principal Curvatures.- 6.2.3 Analysis of Filters.- 6.3 Neural Network Formulation.- 6.3.1 Physiological Considerations.- 6.3.2 Computational Considerations.- 6.3.3 Computing Flow Field.- 6.4 Detection of Motion Discontinuities.- 6.5 Multiple Frame Approaches.- 6.5.1 Batch Approach.- 6.5.2 Recursive Algorithm.- 6.5.3 Detection Rules.- 6.6 Experimental Results.- 6.6.1 Synthetic Image Sequence.- 6.6.2 Natural Image Sequence.- 6.7 Discussion.- 7 Image Restoration.- 7.1 Introduction.- 7.2 An Image Degradation Model.- 7.3 Image Representation.- 7.4 Estimation of Model Parameters.- 7.5 Restoration.- 7.6 A Practical Algorithm.- 7.7 Computer Simulations.- 7.8 Choosing Boundary Values.- 7.9 Comparisons to Other Restoration Methods.- 7.9.1 Inverse Filter and SVD Pseudoinverse Filter.- 7.9.2 MMSE and Modified MMSE Filters.- 7.10 Optical Implementation.- 7.11 Discussion.- 8 Conclusions and Future Research.- 8.1 Conclusions.- 8.2 Future Research.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Altre edizioni note dello stesso titolo

9781461228356: Artificial Neural Networks for Computer Vision

Edizione in evidenza

ISBN 10:  1461228352 ISBN 13:  9781461228356
Casa editrice: Springer, 2011
Brossura