This book is designed as a text for a first-year graduate algebra course. As necessary background we would consider a good undergraduate linear algebra course. An undergraduate abstract algebra course, while helpful, is not necessary (and so an adventurous undergraduate might learn some algebra from this book). Perhaps the principal distinguishing feature of this book is its point of view. Many textbooks tend to be encyclopedic. We have tried to write one that is thematic, with a consistent point of view. The theme, as indicated by our title, is that of modules (though our intention has not been to write a textbook purely on module theory). We begin with some group and ring theory, to set the stage, and then, in the heart of the book, develop module theory. Having developed it, we present some of its applications: canonical forms for linear transformations, bilinear forms, and group representations. Why modules? The answer is that they are a basic unifying concept in mathematics. The reader is probably already familiar with the basic role that vector spaces play in mathematics, and modules are a generaliza tion of vector spaces. (To be precise, modules are to rings as vector spaces are to fields.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
1 Groups.- 1.1 Definitions and Examples.- 1.2 Subgroups and Cosets.- 1.3 Normal Subgroups, Isomorphism Theorems, and Automorphism Groups.- 1.4 Permutation Representations and the Sylow Theorems.- 1.5 The Symmetric Group and Symmetry Groups.- 1.6 Direct and Semidirect Products.- 1.7 Groups of Low Order.- 1.8 Exercises.- 2 Rings.- 2.1 Definitions and Examples.- 2.2 Ideals, Quotient Rings, and Isomorphism Theorems.- 2.3 Quotient Fields and Localization.- 2.4 Polynomial Rings.- 2.5 Principal Ideal Domains and Euclidean Domains.- 2.6 Unique Factorization Domains.- 2.7 Exercises.- 3 Modules and Vector Spaces.- 3.1 Definitions and Examples.- 3.2 Submodules and Quotient Modules.- 3.3 Direct Sums, Exact Sequences, and Horn.- 3.4 Free Modules.- 3.5 Projective Modules.- 3.6 Free Modules over a PID.- 3.7 Finitely Generated Modules over PIDs.- 3.8 Complemented Submodules.- 3.9 Exercises.- 4 Linear Algebra.- 4.1 Matrix Algebra.- 4.2 Determinants and Linear Equations.- 4.3 Matrix Representation of Homomorphisms.- 4.4 Canonical Form Theory.- 4.5 Computational Examples.- 4.6 Inner Product Spaces and Normal Linear Transformations.- 4.7 Exercises.- 5 Matrices over PIDs.- 5.1 Equivalence and Similarity.- 5.2 Hermite Normal Form.- 5.3 Smith Normal Form.- 5.4 Computational Examples.- 5.5 A Rank Criterion for Similarity.- 5.6 Exercises.- 6 Bilinear and Quadratic Forms.- 6.1 Duality.- 6.2 Bilinear and Sesquilinear Forms.- 6.3 Quadratic Forms.- 6.4 Exercises.- 7 Topics in Module Theory.- 7.1 Simple and Semisimple Rings and Modules.- 7.2 Multilinear Algebra.- 7.3 Exercises.- 8 Group Representations.- 8.1 Examples and General Results.- 8.2 Representations of Abelian Groups.- 8.3 Decomposition of the Regular Representation.- 8.4 Characters.- 8.5 Induced Representations.- 8.6 Permutation Representations.- 8.7 Concluding Remarks.- 8.8 Exercises.- Index of Notation.- Index of Terminology.
Book by Adkins William A Weintraub Steven H
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 17,90 per la spedizione da Germania a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: Studibuch, Stuttgart, Germania
hardcover. Condizione: Befriedigend. 536 Seiten; 9780387978390.4 Gewicht in Gramm: 4. Codice articolo 882228
Quantità: 1 disponibili
Da: Books From California, Simi Valley, CA, U.S.A.
Hardcover. Condizione: Good. Codice articolo mon0003776346
Quantità: 3 disponibili
Da: Klondyke, Almere, Paesi Bassi
Condizione: Good. Original boards, illustrated with numerous equations and diagrams, 8vo.Graduate Texts in Mathematics, 136.; Spine discoloured, name in pen on title page. Codice articolo 343233-ZA30
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Gebunden. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book is designed as a text for a first-year graduate algebra course. As necessary background we would consider a good undergraduate linear algebra course. An undergraduate abstract algebra course, while helpful, is not necessary (and so an adventurous . Codice articolo 5913117
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is designed as a text for a first-year graduate algebra course. As necessary background we would consider a good undergraduate linear algebra course. An undergraduate abstract algebra course, while helpful, is not necessary (and so an adventurous undergraduate might learn some algebra from this book). Perhaps the principal distinguishing feature of this book is its point of view. Many textbooks tend to be encyclopedic. We have tried to write one that is thematic, with a consistent point of view. The theme, as indicated by our title, is that of modules (though our intention has not been to write a textbook purely on module theory). We begin with some group and ring theory, to set the stage, and then, in the heart of the book, develop module theory. Having developed it, we present some of its applications: canonical forms for linear transformations, bilinear forms, and group representations. Why modules The answer is that they are a basic unifying concept in mathematics. The reader is probably already familiar with the basic role that vector spaces play in mathematics, and modules are a generaliza tion of vector spaces. (To be precise, modules are to rings as vector spaces are to fields. 544 pp. Englisch. Codice articolo 9780387978390
Quantità: 2 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Buch. Condizione: Neu. Neuware -This book is designed as a text for a first-year graduate algebra course. As necessary background we would consider a good undergraduate linear algebra course. An undergraduate abstract algebra course, while helpful, is not necessary (and so an adventurous undergraduate might learn some algebra from this book). Perhaps the principal distinguishing feature of this book is its point of view. Many textbooks tend to be encyclopedic. We have tried to write one that is thematic, with a consistent point of view. The theme, as indicated by our title, is that of modules (though our intention has not been to write a textbook purely on module theory). We begin with some group and ring theory, to set the stage, and then, in the heart of the book, develop module theory. Having developed it, we present some of its applications: canonical forms for linear transformations, bilinear forms, and group representations. Why modules The answer is that they are a basic unifying concept in mathematics. The reader is probably already familiar with the basic role that vector spaces play in mathematics, and modules are a generaliza tion of vector spaces. (To be precise, modules are to rings as vector spaces are to fields.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 544 pp. Englisch. Codice articolo 9780387978390
Quantità: 2 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 3153288-n
Quantità: Più di 20 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9780387978390
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In English. Codice articolo ria9780387978390_new
Quantità: Più di 20 disponibili
Da: BookHolders, Towson, MD, U.S.A.
Condizione: Poor. [ No Hassle 30 Day Returns ][ Ships Daily ] [ Underlining/Highlighting: NONE ] [ Writing: NONE ] [ Broken Seams: YES ] Reprint edition. Codice articolo 6886758
Quantità: 1 disponibili