A collection of matrices is said to be triangularizable if there is an invertible matrix S such that S1 AS is upper triangular for every A in the collection. This generalization of commutativity is the subject of many classical theorems due to Engel, Kolchin, Kaplansky, McCoy and others. The concept has been extended to collections of bounded linear operators on Banach spaces: such a collection is defined to be triangularizable if there is a maximal chain of subspaces of the Banach space, each of which is invariant under every member of the collection. Most of the classical results have been generalized to compact operators, and there are also recent theorems in the finite-dimensional case. This book is the first comprehensive treatment of triangularizability in both the finite and infinite-dimensional cases. It contains numerous very recent results and new proofs of many of the classical theorems. It provides a thorough background for research in both the linear-algebraic and operator-theoretic aspects of triangularizability and related areas. More generally, the book will be useful to anyone interested in matrices or operators, as many of the results are linked to other topics such as spectral mapping theorems, properties of spectral radii and traces, and the structure of semigroups and algebras of operators. It is essentially self-contained modulo solid courses in linear algebra (for the first half) and functional analysis (for the second half), and is therefore suitable as a text or reference for a graduate course.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
One: Algebras of Matrices.- 1.1 The Triangularization Lemma.- 1.2 Burnside’s Theorem.- 1.3 Triangularizability of Algebras of Matrices.- 1.4 Triangularization and the Radical.- 1.5 Block Triangularization and Characterizations of Triangularizability.- 1.6 Approximate Commutativity.- 1.7 Nonassociative Algebras.- 1.8 Notes and Remarks.- Two: Semigroups of Matrices.- 2.1 Basic Definitions and Propositions.- 2.2 Permutable Trace.- 2.3 Zero-One Spectra.- 2.4 Notes and Remarks.- Three: Spectral Conditions on Semigroups.- 3.1 Reduction to the Field of Complex Numbers.- 3.2 Permutable Spectrum.- 3.3 Submultiplicative Spectrum.- 3.4 Conditions on Spectral Radius.- 3.5 The Dominance Condition on Spectra.- 3.6 Notes and Remarks.- Four: Finiteness Lemmas and Further Spectral Conditions.- 4.1 Reductions to Finite Semigroups.- 4.2 Subadditive and Sublinear Spectra.- 4.3 Further Multiplicative Conditions on Spectra.- 4.4 Polynomial Conditions on Spectra.- 4.5 Notes and Remarks.- Five: Semigroups of Nonnegative Matrices.- 5.1 Decomposability.- 5.2 Indecomposable Semigroups.- 5.3 Connections with Reducibility.- 5.4 Notes and Remarks.- Six: Compact Operators and Invariant Subspaces.- 6.1 Operators on Banach Spaces.- 6.2 Compact Operators.- 6.3 Invariant Subspaces for Compact Operators.- 6.4 The Riesz Decomposition of Compact Operators.- 6.5 Trace-Class Operators on Hilbert Space.- 6.6 Notes and Remarks.- Seven: Algebras of Compact Operators.- 7.1 The Definition of Triangularizability.- 7.2 Spectra from Triangular Forms.- 7.3 Lomonosov’s Lemma and McCoy’s Theorem.- 7.4 Transitive Algebras.- 7.5 Block Triangularization and Applications.- 7.6 Approximate Commutativity.- 7.7 Notes and Remarks.- Eight: Semigroups of Compact Operators.- 8.1 Quasinilpotent Compact Operators.- 8.2 A General Approach.- 8.3 Permutability and Submultiplicativity of Spectra.- 8.4 Subadditivity and Sublinearity of Spectra.- 8.5 Polynomial Conditions on Spectra.- 8.6 Conditions on Spectral Radius and Trace.- 8.7 Nonnegative Operators.- 8.8 Notes and Remarks.- Nine: Bounded Operators.- 9.1 Collections of Nilpotent Operators.- 9.2 Commutators of Rank One.- 9.3 Bands.- 9.4 Nonnegative Operators.- 9.5 Notes and Remarks.- References.- Notation Index.- Author Index.
Book by Radjavi Heydar Rosenthal Peter
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 11,95 per la spedizione da Germania a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: Roland Antiquariat UG haftungsbeschränkt, Weinheim, Germania
Hardcover. 2000. XII, 318 S. ; 24 cm Like new! 9780387984674 Sprache: Englisch Gewicht in Gramm: 608. Codice articolo 200192
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This volume is designed to appeal to two different, yet intersecting audiences: linear algebraists and operator theorists. The first half contains a thorough treatment of classical and recent results on triangularization of collections of matrices, while th. Codice articolo 5913317
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 4973285-n
Quantità: Più di 20 disponibili
Da: Best Price, Torrance, CA, U.S.A.
Condizione: New. SUPER FAST SHIPPING. Codice articolo 9780387984674
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Buch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -A collection of matrices is said to be triangularizable if there is an invertible matrix S such that S1 AS is upper triangular for every A in the collection. This generalization of commutativity is the subject of many classical theorems due to Engel, Kolchin, Kaplansky, McCoy and others. The concept has been extended to collections of bounded linear operators on Banach spaces: such a collection is defined to be triangularizable if there is a maximal chain of subspaces of the Banach space, each of which is invariant under every member of the collection. Most of the classical results have been generalized to compact operators, and there are also recent theorems in the finite-dimensional case. This book is the first comprehensive treatment of triangularizability in both the finite and infinite-dimensional cases. It contains numerous very recent results and new proofs of many of the classical theorems. It provides a thorough background for research in both the linear-algebraic and operator-theoretic aspects of triangularizability and related areas. More generally, the book will be useful to anyone interested in matrices or operators, as many of the results are linked to other topics such as spectral mapping theorems, properties of spectral radii and traces, and the structure of semigroups and algebras of operators. It is essentially self-contained modulo solid courses in linear algebra (for the first half) and functional analysis (for the second half), and is therefore suitable as a text or reference for a graduate course. 336 pp. Englisch. Codice articolo 9780387984674
Quantità: 1 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This volume is designed to appeal to two different, yet intersecting audiences: linear algebraists and operator theorists. The first half contains a thorough treatment of classical and recent results on triangularization of collections of matrices, while the remainder describes what is known about extensions to linear operators on Banach spaces. It will thus be useful to everyone interested in matrices or operators since the results involve many other topics. 336 pp. Englisch. Codice articolo 9780387984674
Quantità: 2 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9780387984674_new
Quantità: Più di 20 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Buch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - A collection of matrices is said to be triangularizable if there is an invertible matrix S such that S1 AS is upper triangular for every A in the collection. This generalization of commutativity is the subject of many classical theorems due to Engel, Kolchin, Kaplansky, McCoy and others. The concept has been extended to collections of bounded linear operators on Banach spaces: such a collection is defined to be triangularizable if there is a maximal chain of subspaces of the Banach space, each of which is invariant under every member of the collection. Most of the classical results have been generalized to compact operators, and there are also recent theorems in the finite-dimensional case. This book is the first comprehensive treatment of triangularizability in both the finite and infinite-dimensional cases. It contains numerous very recent results and new proofs of many of the classical theorems. It provides a thorough background for research in both the linear-algebraic and operator-theoretic aspects of triangularizability and related areas. More generally, the book will be useful to anyone interested in matrices or operators, as many of the results are linked to other topics such as spectral mapping theorems, properties of spectral radii and traces, and the structure of semigroups and algebras of operators. It is essentially self-contained modulo solid courses in linear algebra (for the first half) and functional analysis (for the second half), and is therefore suitable as a text or reference for a graduate course. Codice articolo 9780387984674
Quantità: 1 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 4973285-n
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 4973285
Quantità: Più di 20 disponibili