Hindry, Marc; Silverman, Joseph H. Diophantine Geometry: An Introduction

# Diophantine Geometry: An Introduction

## Hindry, Marc; Silverman, Joseph H.

Valutazione media 4
( su 2 valutazioni fornite da GoodReads )

This is an introduction to diophantine geometry at the advanced graduate level. The book contains a proof of the Mordell conjecture which will make it quite attractive to graduate students and professional mathematicians. In each part of the book, the reader will find numerous exercises.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Book Description:

"In this excellent 500-page volume, the authors introduce the reader to four fundamental finiteness theorems in Diophantine geometry. After reviewing algebraic geometry and the theory of heights in Parts A and B, the Mordell-Weil theorem (the group of rational points on an abelian variety is finitely generated) is presented in Part C, Roth's theorem (an algebraic number has finitely many approximations of order $2 + \varepsilon$) and Siegel's theorem (an affine curve of genus $g \ge 1$ has finitely many integral points) are proved in Part D, and Faltings' theorem (a curve of genus $g \ge 2$ has finitely many rational points) is discussed in Part E.

Together, Parts C--E form the core of the book and can be read by any reader already acquainted with algebraic number theory, classical (i.e., not scheme-theoretical) algebraic geometry, and the height machine. The authors write clearly and strive to help the reader understand this difficult material. They provide insightful introductions, clear motivations for theorems, and helpful outlines of complicated proofs.

This volume will not only serve as a very useful reference for the advanced reader, but it will also be an invaluable tool for students attempting to study Diophantine geometry. Indeed, such students usually face the difficult task of having to acquire a sufficient grasp of algebraic geometry to be able to use algebraic-geometric tools to study Diophantine applications. Many beginners feel overwhelmed by the geometry before they read any of the beautiful arithmetic results. To help such students, the authors have devoted about a third of the volume, Part A, to a lengthy introduction to algebraic geometry, and suggest that the reader begin by skimming Part A, possibly reading more closely any material that covers gaps in the reader's knowledge. Then Part A should be used as a reference source for geometric facts as they are needed while reading the rest of the book.

The first arithmetic portion of the book is Part B, which deals with the theory of height functions, functions which measure the "size" of a point on an algebraic variety. These objects are a key tool for the Diophantine study in Parts C--E, and the authors, in their characteristically clear and insightful style, fully prove in Part B most results on heights later used in the book.

The book concludes in Part F with a survey of further results and open problems, such as the generalization of Mordell's conjecture to higher-dimensional subvarieties of abelian varieties and questions of quantitative and effective results on the solutions of Diophantine problems.

This book is a most welcome addition to the literature. It is well written and renders accessible to students of Diophantine geometry some of the most elegant and beautiful arithmetical results of the 20th century."  (Dino J. Lorenzini, Mathematical Reviews)

Contenuti:

A The Geometry of Curves and Abelian Varieties.- A.1 Algebraic Varieties.- A.2 Divisors.- A.3 Linear Systems.- A.4 Algebraic Curves.- A.5 Abelian Varieties over C.- A.6 Jacobians over C.- A.7 Abelian Varieties over Arbitrary Fields.- A.8 Jacobians over Arbitrary Fields.- A.9 Schemes.- B Height Functions.- B.1 Absolute Values.- B.2 Heights on Projective Space.- B.3 Heights on Varieties.- B.4 Canonical Height Functions.- B.5 Canonical Heights on Abelian Varieties.- B.6 Counting Rational Points on Varieties.- B.7 Heights and Polynomials.- B.8 Local Height Functions.- B.9 Canonical Local Heights on Abelian Varieties.- B.10 Introduction to Arakelov Theory.- Exercises.- C Rational Points on Abelian Varieties.- C.1 The Weak Mordell—Weil Theorem.- C.2 The Kernel of Reduction Modulo p.- C.3 Appendix: Finiteness Theorems in Algebraic Number Theory.- C.4 Appendix: The Selmer and Tate—Shafarevich Groups.- C.5 Appendix: Galois Cohomology and Homogeneous Spaces.- Exercises.- D Diophantine Approximation and Integral Points on Curves.- D.1 Two Elementary Results on Diophantine Approximation.- D.2 Roth’s Theorem.- D.3 Preliminary Results.- D.4 Construction of the Auxiliary Polynomial.- D.5 The Index Is Large.- D.6 The Index Is Small (Roth’s Lemma).- D.7 Completion of the Proof of Roth’s Theorem.- D.8 Application: The Unit Equation U + V = 1.- D.9 Application: Integer Points on Curves.- Exercises.- E Rational Points on Curves of Genus at Least 2.- E.I Vojta’s Geometric Inequality and Faltings’ Theorem.- E.2 Pinning Down Some Height Functions.- E.3 An Outline of the Proof of Vojta’s Inequality.- E.4 An Upper Bound for h?(z, w).- E.5 A Lower Bound for h?(z,w) for Nonvanishing Sections.- E.6 Constructing Sections of Small Height I: Applying Riemann—Roch.- E.7 Constructing Sections of Small Height II: Applying Siegel’s Lemma.- E.8 Lower Bound for h?(z,w) at Admissible Version I.- E.9 Eisenstein’s Estimate for the Derivatives of an Algebraic Function.- E.10 Lower Bound for h?(z,w) at Admissible: Version II.- E.11 A Nonvanishing Derivative of Small Order.- E.12 Completion of the Proof of Vojta’s Inequality.- Exercises.- F Further Results and Open Problems.- F.1 Curves and Abelian Varieties.- F.1.1 Rational Points on Subvarieties of Abelian Varieties.- F.1.2 Application to Points of Bounded Degree on Curves.- F.2 Discreteness of Algebraic Points.- F.2.1 Bogomolov’s Conjecture.- F.2.2 The Height of a Variety.- F.3 Height Bounds and Height Conjectures.- F.4 The Search for Effectivity.- F.4.1 Effective Computation of the Mordell—Weil Group A(k).- F.4.2 Effective Computation of Rational Points on Curves.- F.4.3 Quantitative Bounds for Rational Points.- F.5 Geometry Governs Arithmetic.- F.5.1 Kodaira Dimension.- F.5.2 The Bombieri-Lang Conjecture.- F.5.3 Vojta’s Conjecture.- F.5.4 Varieties Whose Rational Points Are Dense.- Exercises.- References.- List of Notation.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra nuovo Guarda l'articolo
EUR 45,83

Spese di spedizione: EUR 3,36
Da: Regno Unito a: U.S.A.

Destinazione, tempi e costi

Aggiungere al carrello

## 1.Diophantine Geometry : An Introduction

Editore: Springer 2000-04 (2000)
ISBN 10: 0387989811 ISBN 13: 9780387989815
Nuovi Quantità: 5
Print on Demand
Da
Chiron Media
(Wallingford, Regno Unito)
Valutazione libreria

Descrizione libro Springer 2000-04, 2000. Condizione libro: New. This item is printed on demand. Brand new book, sourced directly from publisher. Dispatch time is 24-48 hours from our warehouse. Book will be sent in robust, secure packaging to ensure it reaches you securely. Codice libro della libreria NU-LSI-06994039

Compra nuovo
EUR 45,83
Convertire valuta
Spese di spedizione: EUR 3,36
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

## 2.Diophantine Geometry: An Introduction (Paperback)

Editore: Springer-Verlag New York Inc., United States (2000)
ISBN 10: 0387989811 ISBN 13: 9780387989815
Nuovi Paperback Quantità: 1
Da
The Book Depository
(London, Regno Unito)
Valutazione libreria

Descrizione libro Springer-Verlag New York Inc., United States, 2000. Paperback. Condizione libro: New. 2000 ed.. 229 x 163 mm. Language: English . Brand New Book. This is an introduction to diophantine geometry at the advanced graduate level. The book contains a proof of the Mordell conjecture which will make it quite attractive to graduate students and professional mathematicians. In each part of the book, the reader will find numerous exercises. Codice libro della libreria KNV9780387989815

Compra nuovo
EUR 49,93
Convertire valuta
Spese di spedizione: GRATIS
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

## 3.Diophantine Geometry: An Introduction (Graduate Texts in Mathematics)

Editore: Springer (2000)
ISBN 10: 0387989811 ISBN 13: 9780387989815
Nuovi Brossura Quantità: 1
Da
Book Deals
(Lewiston, NY, U.S.A.)
Valutazione libreria

Descrizione libro Springer, 2000. Condizione libro: New. Brand New, Unread Copy in Perfect Condition. A+ Customer Service! Summary: This introduction to diophantine geometry at the advanced graduate level contains a proof of the Mordell conjecture, making it equally attractive to professional mathematicians. Each part of the book includes numerous exercises. Codice libro della libreria ABE_book_new_0387989811

Compra nuovo
EUR 50,08
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

## 4.Diophantine Geometry: An Introduction (Paperback)

Editore: Springer-Verlag New York Inc., United States (2000)
ISBN 10: 0387989811 ISBN 13: 9780387989815
Nuovi Paperback Quantità: 1
Da
The Book Depository US
(London, Regno Unito)
Valutazione libreria

Descrizione libro Springer-Verlag New York Inc., United States, 2000. Paperback. Condizione libro: New. 2000 ed.. 229 x 163 mm. Language: English . Brand New Book. This is an introduction to diophantine geometry at the advanced graduate level. The book contains a proof of the Mordell conjecture which will make it quite attractive to graduate students and professional mathematicians. In each part of the book, the reader will find numerous exercises. Codice libro della libreria KNV9780387989815

Compra nuovo
EUR 50,10
Convertire valuta
Spese di spedizione: GRATIS
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

## 5.Diophantine Geometry: An Introduction

ISBN 10: 0387989811 ISBN 13: 9780387989815
Nuovi Quantità: > 20
Print on Demand
Da
GreatBookPrices
(Columbia, MD, U.S.A.)
Valutazione libreria

Descrizione libro Condizione libro: New. This item is printed on demand. Codice libro della libreria 672927-n

Compra nuovo
EUR 49,02
Convertire valuta
Spese di spedizione: EUR 2,43
In U.S.A.
Destinazione, tempi e costi

## 6.Diophantine Geometry: An Introduction (Graduate Texts in Mathematics)

Editore: Springer (2000)
ISBN 10: 0387989811 ISBN 13: 9780387989815
Nuovi Paperback Quantità: 1
Da
Irish Booksellers
(Rumford, ME, U.S.A.)
Valutazione libreria

Descrizione libro Springer, 2000. Paperback. Condizione libro: New. book. Codice libro della libreria 0387989811

Compra nuovo
EUR 57,22
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

## 7.Diophantine Geometry

Editore: Springer-Verlag New York Inc. (2000)
ISBN 10: 0387989811 ISBN 13: 9780387989815
Nuovi Quantità: > 20
Print on Demand
Da
Books2Anywhere
(Fairford, GLOS, Regno Unito)
Valutazione libreria

Descrizione libro Springer-Verlag New York Inc., 2000. PAP. Condizione libro: New. New Book. Delivered from our UK warehouse in 3 to 5 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice libro della libreria LQ-9780387989815

Compra nuovo
EUR 48,88
Convertire valuta
Spese di spedizione: EUR 10,11
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

## 8.Diophantine Geometry

ISBN 10: 0387989811 ISBN 13: 9780387989815
Nuovi Quantità: 1
Da
English-Book-Service Mannheim
(Mannheim, Germania)
Valutazione libreria

Descrizione libro Condizione libro: New. Publisher/Verlag: Springer, Berlin | An Introduction | This is an introduction to diophantine geometry at the advanced graduate level. The book contains a proof of the Mordell conjecture which will make it quite attractive to graduate students and professional mathematicians. In each part of the book, the reader will find numerous exercises. | A The Geometry of Curves and Abelian Varieties.- A.1 Algebraic Varieties.- A.2 Divisors.- A.3 Linear Systems.- A.4 Algebraic Curves.- A.5 Abelian Varieties over C.- A.6 Jacobians over C.- A.7 Abelian Varieties over Arbitrary Fields.- A.8 Jacobians over Arbitrary Fields.- A.9 Schemes.- B Height Functions.- B.1 Absolute Values.- B.2 Heights on Projective Space.- B.3 Heights on Varieties.- B.4 Canonical Height Functions.- B.5 Canonical Heights on Abelian Varieties.- B.6 Counting Rational Points on Varieties.- B.7 Heights and Polynomials.- B.8 Local Height Functions.- B.9 Canonical Local Heights on Abelian Varieties.- B.10 Introduction to Arakelov Theory.- Exercises.- C Rational Points on Abelian Varieties.- C.1 The Weak Mordell-Weil Theorem.- C.2 The Kernel of Reduction Modulo p.- C.3 Appendix: Finiteness Theorems in Algebraic Number Theory.- C.4 Appendix: The Selmer and Tate-Shafarevich Groups.- C.5 Appendix: Galois Cohomology and Homogeneous Spaces.- Exercises.- D Diophantine Approximation and Integral Points on Curves.- D.1 Two Elementary Results on Diophantine Approximation.- D.2 Roth&apos;s Theorem.- D.3 Preliminary Results.- D.4 Construction of the Auxiliary Polynomial.- D.5 The Index Is Large.- D.6 The Index Is Small (Roth&apos;s Lemma).- D.7 Completion of the Proof of Roth&apos;s Theorem.- D.8 Application: The Unit Equation U + V = 1.- D.9 Application: Integer Points on Curves.- Exercises.- E Rational Points on Curves of Genus at Least 2.- E.I Vojta&apos;s Geometric Inequality and Faltings&apos; Theorem.- E.2 Pinning Down Some Height Functions.- E.3 An Outline of the Proof of Vojta&apos;s Inequality.- E.4 An Upper Bound for h?(z, w).- E.5 A Lower Bound for h?(z,w) for Nonvanishing Sections.- E.6 Constructing Sections of Small Height I: Applying Riemann-Roch.- E.7 Constructing Sections of Small Height II: Applying Siegel&apos;s Lemma.- E.8 Lower Bound for h?(z,w) at Admissible Version I.- E.9 Eisenstein&apos;s Estimate for the Derivatives of an Algebraic Function.- E.10 Lower Bound for h?(z,w) at Admissible: Version II.- E.11 A Nonvanishing Derivative of Small Order.- E.12 Completion of the Proof of Vojta&apos;s Inequality.- Exercises.- F Further Results and Open Problems.- F.1 Curves and Abelian Varieties.- F.1.1 Rational Points on Subvarieties of Abelian Varieties.- F.1.2 Application to Points of Bounded Degree on Curves.- F.2 Discreteness of Algebraic Points.- F.2.1 Bogomolov&apos;s Conjecture.- F.2.2 The Height of a Variety.- F.3 Height Bounds and Height Conjectures.- F.4 The Search for Effectivity.- F.4.1 Effective Computation of the Mordell-Weil Group A(k).- F.4.2 Effective Computation of Rational Points on Curves.- F.4.3 Quantitative Bounds for Rational Points.- F.5 Geometry Governs Arithmetic.- F.5.1 Kodaira Dimension.- F.5.2 The Bombieri-Lang Conjecture.- F.5.3 Vojta&apos;s Conjecture.- F.5.4 Varieties Whose Rational Points Are Dense.- Exercises.- References.- List of Notation. | Format: Paperback | Language/Sprache: english | 800 gr | 561 pp. Codice libro della libreria K9780387989815

Compra nuovo
EUR 55,34
Convertire valuta
Spese di spedizione: EUR 4,00
Da: Germania a: U.S.A.
Destinazione, tempi e costi

## 9.Diophantine Geometry

Editore: Springer-Verlag New York Inc. (2000)
ISBN 10: 0387989811 ISBN 13: 9780387989815
Nuovi Quantità: > 20
Print on Demand
Da
PBShop
(Secaucus, NJ, U.S.A.)
Valutazione libreria

Descrizione libro Springer-Verlag New York Inc., 2000. PAP. Condizione libro: New. New Book. Shipped from US within 10 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice libro della libreria IQ-9780387989815

Compra nuovo
EUR 56,22
Convertire valuta
Spese di spedizione: EUR 3,67
In U.S.A.
Destinazione, tempi e costi

## 10.Diophantine Geometry. An Introduction

Editore: Springer (2000)
ISBN 10: 0387989811 ISBN 13: 9780387989815
Nuovi Paperback Quantità: 1
Da
Herb Tandree Philosophy Books
(Stroud, GLOS, Regno Unito)
Valutazione libreria

Descrizione libro Springer, 2000. Paperback. Condizione libro: NEW. 9780387989815 Paperback, This listing is a new book, a title currently in-print which we order directly and immediately from the publisher. Codice libro della libreria HTANDREE0411395

Compra nuovo
EUR 50,93
Convertire valuta
Spese di spedizione: EUR 8,99
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi