Machine Learning and Noisy Labels: Definitions, Theory, Techniques and Solutions provides an ideal introduction to machine learning with noisy labels that is suitable for senior undergraduates, post graduate students, researchers and practitioners using, and researching, machine learning methods. Most of the modern machine learning models based on deep learning techniques depend on carefully curated and cleanly labeled training sets to be reliably trained and deployed. However, the expensive labeling process involved in the acquisition of such training sets limits the number and size of datasets available to build new models, slowing down progress in the field. This book defines the different types of label noise, introduces the theory behind the problem, presents the main techniques that enable the effective use of noisy-label training sets, and explains the most accurate methods.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Professor Gustavo Carneiro, Artificial Intelligence and Machine Learning, University of Surrey, UK.
Most of the modern machine learning models, based on deep learning techniques, depend on carefully curated and cleanly labelled training sets to be reliably trained and deployed. However, the expensive labelling process involved in the acquisition of such training sets limits the number and size of datasets available to build new models, slowing down progress in the field. Alternatively, many poorly curated training sets containing noisy labels are readily available to be used to build new models. However, the successful exploration of such noisy-label training sets depends on the development of algorithms and models that are robust to these noisy labels. Machine learning and Noisy Labels: Definitions, Theory, Techniques and Solutions defines different types of label noise, introduces the theory behind the problem, presents the main techniques that enable the effective use of noisy-label training sets, and explains the most accurate methods developed in the field. This book is an ideal introduction to machine learning with noisy labels suitable for senior undergraduates, post graduate students, researchers and practitioners using, and researching into, machine learning methods.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 17,55 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiEUR 8,30 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiDa: Speedyhen, London, Regno Unito
Condizione: NEW. Codice articolo NW9780443154416
Quantità: 2 disponibili
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
PAP. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo GB-9780443154416
Quantità: 2 disponibili
Da: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo GB-9780443154416
Quantità: 2 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Codice articolo 399902907
Quantità: 3 disponibili
Da: Brook Bookstore On Demand, Napoli, NA, Italia
Condizione: new. Questo è un articolo print on demand. Codice articolo PN6W59UUHY
Quantità: Più di 20 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 200 pages. 9.21x6.13x0.79 inches. In Stock. Codice articolo __0443154414
Quantità: 2 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 46753536-n
Quantità: 2 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 46753536-n
Quantità: 2 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9780443154416_new
Quantità: 2 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. Codice articolo 26396474212
Quantità: 3 disponibili