Cheminformatics, QSAR and Machine Learning Applications for Novel Drug Development aims at showcasing different structure-based, ligand-based, and machine learning tools currently used in drug design. It also highlights special topics of computational drug design together with the available tools and databases. The integrated presentation of chemometrics, cheminformatics, and machine learning methods under is one of the strengths of the book.
The first part of the content is devoted to establishing the foundations of the area. Here recent trends in computational modeling of drugs are presented. Other topics present in this part include QSAR in medicinal chemistry, structure-based methods, chemoinformatics and chemometric approaches, and machine learning methods in drug design. The second part focuses on methods and case studies including molecular descriptors, molecular similarity, structure-based based screening, homology modeling in protein structure predictions, molecular docking, stability of drug receptor interactions, deep learning and support vector machine in drug design. The third part of the book is dedicated to special topics, including dedicated chapters on topics ranging from de design of green pharmaceuticals to computational toxicology. The final part is dedicated to present the available tools and databases, including QSAR databases, free tools and databases in ligand and structure-based drug design, and machine learning resources for drug design. The final chapters discuss different web servers used for identification of various drug candidates.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Dr. Kunal Roy is a Professor and Ex-Head in the Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India. He has been a recipient of Commonwealth Academic Staff Fellowship (University of Manchester, 2007) and Marie Curie International Incoming Fellowship (University of Manchester, 2013). The field of his research interest is QSAR and Molecular Modeling with application in Drug Design and Ecotoxicological Modeling. Dr. Roy has published more than 350 research articles in refereed journals (current SCOPUS h index 49). He has also coauthored two QSAR-related books, edited six QSAR books and published more than ten book chapters. Dr. Roy is a Co-Editor-in-Chief of Molecular Diversity (Springer Nature). He also serves as a member of the Editorial Boards of several International Journals.
Cheminformatics, QSAR and Machine Learning Applications for Novel Drug Development aims at showcasing different structure-based, ligand-based, and machine learning tools currently used in drug design. It also highlights special topics of computational drug design together with the available tools and databases. The integrated presentation of chemometrics, cheminformatics, and machine learning methods under is one of the strengths of the book.
The first part of the content is devoted to establishing the foundations of the area. Here recent trends in computational modeling of drugs are presented. Other topics present in this part include QSAR in medicinal chemistry, structure-based methods, chemoinformatics and chemometric approaches, and machine learning methods in drug design. The second part focuses on methods and case studies including molecular descriptors, molecular similarity, statistical methods for QSAR, structure-based based screening, homology modeling in protein structure predictions, molecular docking, stability of drug receptor interactions, quantum chemical approaches, deep learning and support vector machine in drug design. The third part of the book is dedicated to special topics, including dedicated chapters on topics ranging from de design of green pharmaceuticals to computational toxicology. The final part is dedicated to present the available tools and databases, including QSAR databases, free tools and databases in ligand and structure-based drug design, and machine learning resources for drug design. The final chapters discuss different web servers used for identification of various drug candidates.
Cheminformatics, QSAR and Machine Learning Applications for Novel Drug Development is an integrated reference for of pharmaceutical scientists presenting the tools alongside relevant case studies. Professionals involved with molecular modeling for pharmaceutical industries will also benefit from the practical presentation of the computational tools and case studies.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
GRATIS per la spedizione in U.S.A.
Destinazione, tempi e costiEUR 3,43 per la spedizione in U.S.A.
Destinazione, tempi e costiDa: BooksRun, Philadelphia, PA, U.S.A.
Paperback. Condizione: Good. 1. It's a preowned item in good condition and includes all the pages. It may have some general signs of wear and tear, such as markings, highlighting, slight damage to the cover, minimal wear to the binding, etc., but they will not affect the overall reading experience. Codice articolo 0443186383-11-1
Quantità: 1 disponibili
Da: TextbookRush, Grandview Heights, OH, U.S.A.
Condizione: Brand New. Ships SAME or NEXT business day. We Ship to APO/FPO addr. Choose EXPEDITED shipping and receive in 2-5 business days within the United States. See our member profile for customer support contact info. We have an easy return policy. Codice articolo 52468394
Quantità: 1 disponibili
Da: Brook Bookstore On Demand, Napoli, NA, Italia
Condizione: new. Questo è un articolo print on demand. Codice articolo 9QICRSHMLJ
Quantità: Più di 20 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Codice articolo 401355787
Quantità: 3 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. 1st edition NO-PA16APR2015-KAP. Codice articolo 26396069844
Quantità: 3 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 600 pages. 9.25x7.50 inches. In Stock. Codice articolo __0443186383
Quantità: 2 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. Codice articolo 18396069854
Quantità: 3 disponibili