Articoli correlati a Machine Learning in Geohazard Risk Prediction and Assessment...

Machine Learning in Geohazard Risk Prediction and Assessment: From Microscale Analysis to Regional Mapping - Brossura

 
9780443236631: Machine Learning in Geohazard Risk Prediction and Assessment: From Microscale Analysis to Regional Mapping

Sinossi

Machine Learning in Geohazard Risk Prediction and Assessment: From Microscale Analysis to Regional Mapping presents an overview of the most recent developments in machine learning techniques that have reshaped our understanding of geo-materials and management protocols of geo-risk. The book covers a broad category of research on machine-learning techniques that can be applied, from microscopic modeling to constitutive modeling, to physics-based numerical modeling, to regional susceptibility mapping. This is a good reference for researchers, academicians, graduate and undergraduate students, professionals, and practitioners in the field of geotechnical engineering and applied geology.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sugli autori

Biswajeet Pradhan is a distinguished professor at UTS School of Civil and Environmental Engineering. He is an international expert in data-driven modelling and a pioneer in combining spatial modelling with statistical and machine learning models for natural hazard predictions including landslides. He has a track record of outstanding research outputs, with over 600 journal articles. He is a highly interdisciplinary researcher with publications across 12 areas, listed as having ‘Excellent’ international collaboration status. He has been a Highly Cited Researcher for five consecutive years (2016-2020) and ranks fifth in the field of Geological & Geoenvironmental Engineering.

Daichao Sheng is a distinguished professor and the head of School of Civil and Environmental Engineering. He has developed an internationally recognized profile in computational geomechanics including soft computing, unsaturated soils, geo-risk analysis and transport geotechnics. He has published 300+ peer-reviewed papers and two books, including 200+ papers in top geotechnical and computational mechanics journals. These publications now attract 1400+ citations per annum, with an H-Index of 48 in Scopus. His track record places him easily within the top handful of geomechanics professionals of his age worldwide. He has collaborated widely with Australian and international researchers in his field

Xuzhen He is a senior lecturer at UTS School of Civil and Environmental Engineering. He is an early career researcher and completed his undergraduate and PhD training at the world’s top universities (Tsinghua for his BSc and Cambridge for his PhD) and was awarded the John Winbolt Prize and the Raymond and Helen Kwok Scholarship from Cambridge University. He was awarded the Australian Research Council Discovery Early Career Researcher Award in 2021. His research interest lies mainly in computational geomechanics, and he has published 30+ high-quality journal papers in these areas.

Dalla quarta di copertina

Machine Learning in Geohazard Risk Prediction and Assessment: From Microscale Analysis to Regional Mapping presents an overview of the most recent developments in machine learning techniques that have reshaped our understanding of geo-materials and management protocols of geo-risk. This book covers a broad category of research that machine-learning techniques that can be applied, from microscopic modelling to constitutive modelling, to physics-based numerical modelling, to regional susceptibility mapping. This will be a good reference for researchers, academicians, graduate and undergraduate students, professionals, and practitioners in the field of geotechnical engineering and applied geology.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Risultati della ricerca per Machine Learning in Geohazard Risk Prediction and Assessment...

Foto dell'editore

ISBN 10: 0443236631 ISBN 13: 9780443236631
Nuovo Brossura
Print on Demand

Da: Brook Bookstore On Demand, Napoli, NA, Italia

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: new. Questo è un articolo print on demand. Codice articolo GLGJAGPH8K

Contatta il venditore

Compra nuovo

EUR 146,22
Convertire valuta
Spese di spedizione: EUR 22,50
In Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Editore: Elsevier, 2025
ISBN 10: 0443236631 ISBN 13: 9780443236631
Nuovo Brossura

Da: Majestic Books, Hounslow, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 397552776

Contatta il venditore

Compra nuovo

EUR 161,65
Convertire valuta
Spese di spedizione: EUR 10,23
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 3 disponibili

Aggiungi al carrello

Foto dell'editore

Pradhan, Biswajeet (Editor)/ Sheng, Daichao (Editor)/ He, Xuzhen (Editor)
Editore: Elsevier Science Ltd, 2025
ISBN 10: 0443236631 ISBN 13: 9780443236631
Nuovo Paperback

Da: Revaluation Books, Exeter, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Brand New. 325 pages. In Stock. Codice articolo __0443236631

Contatta il venditore

Compra nuovo

EUR 166,52
Convertire valuta
Spese di spedizione: EUR 11,56
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Editore: Elsevier, 2025
ISBN 10: 0443236631 ISBN 13: 9780443236631
Nuovo Brossura

Da: Biblios, Frankfurt am main, HESSE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 18398824285

Contatta il venditore

Compra nuovo

EUR 182,62
Convertire valuta
Spese di spedizione: EUR 7,95
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 3 disponibili

Aggiungi al carrello

Foto dell'editore

Biswajeet Pradhan
ISBN 10: 0443236631 ISBN 13: 9780443236631
Nuovo Paperback

Da: CitiRetail, Stevenage, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: new. Paperback. Machine Learning in Geohazard Risk Prediction and Assessment: From Microscale Analysis to Regional Mapping presents an overview of the most recent developments in machine learning techniques that have reshaped our understanding of geo-materials and management protocols of geo-risk. The book covers a broad category of research on machine-learning techniques that can be applied, from microscopic modeling to constitutive modeling, to physics-based numerical modeling, to regional susceptibility mapping. This is a good reference for researchers, academicians, graduate and undergraduate students, professionals, and practitioners in the field of geotechnical engineering and applied geology. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Codice articolo 9780443236631

Contatta il venditore

Compra nuovo

EUR 159,60
Convertire valuta
Spese di spedizione: EUR 34,69
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello