The first part of this book is a text for graduate courses in topology. In chapters 1 - 5, part of the basic material of plane topology, combinatorial topology, dimension theory and ANR theory is presented. For a student who will go on in geometric or algebraic topology this material is a prerequisite for later work. Chapter 6 is an introduction to infinite-dimensional topology; it uses for the most part geometric methods, and gets to spectacular results fairly quickly. The second part of this book, chapters 7 & 8, is part of geometric topology and is meant for the more advanced mathematician interested in manifolds.
The text is self-contained for readers with a modest knowledge of general topology and linear algebra; the necessary background material is collected in chapter 1, or developed as needed.
One can look upon this book as a complete and self-contained proof of Toruńczyk's Hilbert cube manifold characterization theorem:a compact ANR X is a manifold modeled on the Hilbert cube if and only if X satisfies the disjoint-cells property. In the process of proving this result several interesting and useful detours are made.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
...recommended to anyone who wishes to get familiar with infinite-dimensional topology and at the same time learn about some its most beautiful results.
Zentralblatt für Mathematik
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
(nessuna copia disponibile)
Cerca: Inserisci un desiderataNon riesci a trovare il libro che stai cercando? Continueremo a cercarlo per te. Se uno dei nostri librai lo aggiunge ad AbeBooks, ti invieremo una notifica!
Inserisci un desiderata