Large-Scale Inverse Problems and Quantification of Uncertainty

Valutazione media 3,67
( su 3 valutazioni fornite da Goodreads )
 
9780470697436: Large-Scale Inverse Problems and Quantification of Uncertainty

This book focuses on computational methods for large-scale statistical inverse problems and provides an introduction to statistical Bayesian and frequentist methodologies. Recent research advances for approximation methods are discussed, along with Kalman filtering methods and optimization-based approaches to solving inverse problems. The aim is to cross-fertilize the perspectives of researchers in the areas of data assimilation, statistics, large-scale optimization, applied and computational mathematics, high performance computing, and cutting-edge applications.

The solution to large-scale inverse problems critically depends on methods to reduce computational cost. Recent research approaches tackle this challenge in a variety of different ways. Many of the computational frameworks highlighted in this book build upon state-of-the-art methods for simulation of the forward problem, such as, fast Partial Differential Equation (PDE) solvers, reduced-order models and emulators of the forward problem, stochastic spectral approximations, and ensemble-based approximations, as well as exploiting the machinery for large-scale deterministic optimization through adjoint and other sensitivity analysis methods.

Key Features:

· Brings together the perspectives of researchers in areas of inverse problems and data assimilation.

· Assesses the current state-of-the-art and identify needs and opportunities for future research.

· Focuses on the computational methods used to analyze and simulate inverse problems.

· Written by leading experts of inverse problems and uncertainty quantification.

Graduate students and researchers working in statistics, mathematics and engineering will benefit from this book.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

From the Inside Flap:

Large-Scale Inverse Problems and Quantification of Uncertainty

 

Editors

Lorenz Biegler, Carnegie Mellon University, USA

George Biros, Georgia Institute of Technology, USA

Omar Ghattas, University of Texas at Austin, USA

Matthias Heinkenschloss, Rice University, USA

David Keyes, KAUST and Columbia University, USA

Bani Mallick, Texas A&M University, USA

Luis Tenorio, Colorado School of Mines, USA

Bart van Bloemen Waanders, Sandia National Laboratories, USA

Karen Wilcox, Massachusetts Institute of Technology, USA

Youssef Marzouk, Massachusetts Institute of Technology, USA

 

This book focuses on computational methods for large-scale statistical inverse problems and provides an introduction to statistical Bayesian and frequentist methodologies. Recent research advances for approximation methods are discussed, along with Kalman filtering methods and optimization-based approaches to solving inverse problems. The aim is to cross-fertilize the perspectives of researchers in the areas of data assimilation, statistics, large-scale optimization, applied and computational mathematics, high performance computing, and cutting-edge applications.

 

The solution to large-scale inverse problems critically depends on methods to reduce computational cost. Recent research approaches tackle this challenge in a variety of different ways. Many of the computational frameworks highlighted in this book build upon state-of-the-art methods for simulation of the forward problem, such as, fast Partial Differential Equation (PDE) solvers, reduced-order models and emulators of the forward problem, stochastic spectral approximations, and ensemble-based approximations, as well as exploiting the machinery for large-scale deterministic optimization through adjoint and other sensitivity analysis methods.

 

Key Features:

 

· Brings together the perspectives of researchers in areas of inverse problems and data assimilation.

· Assesses the current state-of-the-art and identify needs and opportunities for future research.

· Focuses on the computational methods used to analyze and simulate inverse problems.

· Written by leading experts of inverse problems and uncertainty quantification.

 

Graduate students and researchers working in statistics, mathematics and engineering will benefit from this book.

From the Back Cover:

 

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

I migliori risultati di ricerca su AbeBooks

1.

Editore: John Wiley and Sons Ltd, United States (2011)
ISBN 10: 0470697431 ISBN 13: 9780470697436
Nuovi Rilegato Quantità: 10
Da
The Book Depository
(London, Regno Unito)
Valutazione libreria
[?]

Descrizione libro John Wiley and Sons Ltd, United States, 2011. Hardback. Condizione libro: New. Language: English . Brand New Book. This book focuses on computational methods for large-scale statistical inverse problems and provides an introduction to statistical Bayesian and frequentist methodologies. Recent research advances for approximation methods are discussed, along with Kalman filtering methods and optimization-based approaches to solving inverse problems. The aim is to cross-fertilize the perspectives of researchers in the areas of data assimilation, statistics, large-scale optimization, applied and computational mathematics, high performance computing, and cutting-edge applications. The solution to large-scale inverse problems critically depends on methods to reduce computational cost. Recent research approaches tackle this challenge in a variety of different ways. Many of the computational frameworks highlighted in this book build upon state-of-the-art methods for simulation of the forward problem, such as, fast Partial Differential Equation (PDE) solvers, reduced-order models and emulators of the forward problem, stochastic spectral approximations, and ensemble-based approximations, as well as exploiting the machinery for large-scale deterministic optimization through adjoint and other sensitivity analysis methods. Key Features: * Brings together the perspectives of researchers in areas of inverse problems and data assimilation. * Assesses the current state-of-the-art and identify needs and opportunities for future research. * Focuses on the computational methods used to analyze and simulate inverse problems. * Written by leading experts of inverse problems and uncertainty quantification. Graduate students and researchers working in statistics, mathematics and engineering will benefit from this book. Codice libro della libreria AAH9780470697436

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 95,45
Convertire valuta

Aggiungere al carrello

Spese di spedizione: GRATIS
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

2.

Lorenz Biegler
Editore: Wileyand#8211;Blackwell (2010)
ISBN 10: 0470697431 ISBN 13: 9780470697436
Nuovi Quantità: > 20
Da
Books2Anywhere
(Fairford, GLOS, Regno Unito)
Valutazione libreria
[?]

Descrizione libro Wileyand#8211;Blackwell, 2010. HRD. Condizione libro: New. New Book. Shipped from UK in 4 to 14 days. Established seller since 2000. Codice libro della libreria FW-9780470697436

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 92,21
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 10,17
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

3.

Editore: John Wiley and Sons Ltd, United States (2011)
ISBN 10: 0470697431 ISBN 13: 9780470697436
Nuovi Rilegato Quantità: 10
Da
The Book Depository US
(London, Regno Unito)
Valutazione libreria
[?]

Descrizione libro John Wiley and Sons Ltd, United States, 2011. Hardback. Condizione libro: New. Language: English . Brand New Book. This book focuses on computational methods for large-scale statistical inverse problems and provides an introduction to statistical Bayesian and frequentist methodologies. Recent research advances for approximation methods are discussed, along with Kalman filtering methods and optimization-based approaches to solving inverse problems. The aim is to cross-fertilize the perspectives of researchers in the areas of data assimilation, statistics, large-scale optimization, applied and computational mathematics, high performance computing, and cutting-edge applications. The solution to large-scale inverse problems critically depends on methods to reduce computational cost. Recent research approaches tackle this challenge in a variety of different ways. Many of the computational frameworks highlighted in this book build upon state-of-the-art methods for simulation of the forward problem, such as, fast Partial Differential Equation (PDE) solvers, reduced-order models and emulators of the forward problem, stochastic spectral approximations, and ensemble-based approximations, as well as exploiting the machinery for large-scale deterministic optimization through adjoint and other sensitivity analysis methods. Key Features: * Brings together the perspectives of researchers in areas of inverse problems and data assimilation. * Assesses the current state-of-the-art and identify needs and opportunities for future research. * Focuses on the computational methods used to analyze and simulate inverse problems. * Written by leading experts of inverse problems and uncertainty quantification. Graduate students and researchers working in statistics, mathematics and engineering will benefit from this book. Codice libro della libreria AAH9780470697436

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 105,48
Convertire valuta

Aggiungere al carrello

Spese di spedizione: GRATIS
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

4.

Lorenz T. Biegler, George Biros, Omar Ghattas, Matthias Heinkenschloss, David Keyes
Editore: John Wiley and Sons Ltd
ISBN 10: 0470697431 ISBN 13: 9780470697436
Nuovi Rilegato Quantità: > 20
Da
THE SAINT BOOKSTORE
(Southport, Regno Unito)
Valutazione libreria
[?]

Descrizione libro John Wiley and Sons Ltd. Hardback. Condizione libro: new. BRAND NEW, Large-Scale Inverse Problems and Quantification of Uncertainty, Lorenz T. Biegler, George Biros, Omar Ghattas, Matthias Heinkenschloss, David Keyes, This book focuses on computational methods for large-scale statistical inverse problems and provides an introduction to statistical Bayesian and frequentist methodologies. Recent research advances for approximation methods are discussed, along with Kalman filtering methods and optimization-based approaches to solving inverse problems. The aim is to cross-fertilize the perspectives of researchers in the areas of data assimilation, statistics, large-scale optimization, applied and computational mathematics, high performance computing, and cutting-edge applications. The solution to large-scale inverse problems critically depends on methods to reduce computational cost. Recent research approaches tackle this challenge in a variety of different ways. Many of the computational frameworks highlighted in this book build upon state-of-the-art methods for simulation of the forward problem, such as, fast Partial Differential Equation (PDE) solvers, reduced-order models and emulators of the forward problem, stochastic spectral approximations, and ensemble-based approximations, as well as exploiting the machinery for large-scale deterministic optimization through adjoint and other sensitivity analysis methods. Key Features: * Brings together the perspectives of researchers in areas of inverse problems and data assimilation. * Assesses the current state-of-the-art and identify needs and opportunities for future research. * Focuses on the computational methods used to analyze and simulate inverse problems. * Written by leading experts of inverse problems and uncertainty quantification. Graduate students and researchers working in statistics, mathematics and engineering will benefit from this book. Codice libro della libreria B9780470697436

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 99,85
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 7,86
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

5.

Editor: Lorenz Biegler (Carnegie Mellon, USA ); Co-Editor: George Biros (University of Pennsylvania, USA ); Co-Editor: Omar Ghattas (Univesity of Texas at Austin, USA ); Co-Editor: Matthias Heinkenschloss (Rice University, USA ); Co-Editor: David Key
Editore: John Wiley and Sons
ISBN 10: 0470697431 ISBN 13: 9780470697436
Nuovi Quantità: > 20
Da
INDOO
(Avenel, NJ, U.S.A.)
Valutazione libreria
[?]

Descrizione libro John Wiley and Sons. Condizione libro: New. Brand New. Codice libro della libreria 0470697431

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 109,64
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 3,04
In U.S.A.
Destinazione, tempi e costi

6.

Editore: Wiley (2010)
ISBN 10: 0470697431 ISBN 13: 9780470697436
Nuovi Rilegato Quantità: 1
Da
Irish Booksellers
(Rumford, ME, U.S.A.)
Valutazione libreria
[?]

Descrizione libro Wiley, 2010. Hardcover. Condizione libro: New. book. Codice libro della libreria 0470697431

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 132,61
Convertire valuta

Aggiungere al carrello

Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

7.

Editore: Wiley (2010)
ISBN 10: 0470697431 ISBN 13: 9780470697436
Nuovi Rilegato Quantità: 2
Da
Murray Media
(North Miami Beach, FL, U.S.A.)
Valutazione libreria
[?]

Descrizione libro Wiley, 2010. Hardcover. Condizione libro: New. Codice libro della libreria P110470697431

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 133,01
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 2,59
In U.S.A.
Destinazione, tempi e costi

8.

LORENZ BIEGLER
ISBN 10: 0470697431 ISBN 13: 9780470697436
Nuovi Rilegato Quantità: 10
Da
Herb Tandree Philosophy Books
(Stroud, GLOS, Regno Unito)
Valutazione libreria
[?]

Descrizione libro 2010. Hardback. Condizione libro: NEW. 9780470697436 This listing is a new book, a title currently in-print which we order directly and immediately from the publisher. Codice libro della libreria HTANDREE0777160

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 137,99
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 9,04
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

9.

Editore: John Wiley and Sons Ltd, United States (2011)
ISBN 10: 0470697431 ISBN 13: 9780470697436
Nuovi Rilegato Quantità: 10
Da
Book Depository hard to find
(London, Regno Unito)
Valutazione libreria
[?]

Descrizione libro John Wiley and Sons Ltd, United States, 2011. Hardback. Condizione libro: New. Language: English . This book usually ship within 10-15 business days and we will endeavor to dispatch orders quicker than this where possible. Brand New Book. This book focuses on computational methods for large-scale statistical inverse problems and provides an introduction to statistical Bayesian and frequentist methodologies. Recent research advances for approximation methods are discussed, along with Kalman filtering methods and optimization-based approaches to solving inverse problems. The aim is to cross-fertilize the perspectives of researchers in the areas of data assimilation, statistics, large-scale optimization, applied and computational mathematics, high performance computing, and cutting-edge applications. The solution to large-scale inverse problems critically depends on methods to reduce computational cost. Recent research approaches tackle this challenge in a variety of different ways. Many of the computational frameworks highlighted in this book build upon state-of-the-art methods for simulation of the forward problem, such as, fast Partial Differential Equation (PDE) solvers, reduced-order models and emulators of the forward problem, stochastic spectral approximations, and ensemble-based approximations, as well as exploiting the machinery for large-scale deterministic optimization through adjoint and other sensitivity analysis methods. Key Features: * Brings together the perspectives of researchers in areas of inverse problems and data assimilation. * Assesses the current state-of-the-art and identify needs and opportunities for future research. * Focuses on the computational methods used to analyze and simulate inverse problems. * Written by leading experts of inverse problems and uncertainty quantification. Graduate students and researchers working in statistics, mathematics and engineering will benefit from this book. Codice libro della libreria BZV9780470697436

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 149,30
Convertire valuta

Aggiungere al carrello

Spese di spedizione: GRATIS
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

10.

Biegler, Lorenz (Editor)/ Biros, George (Editor)/ Ghattas, Omar (Editor)/ Heinkenschloss, Matthias (Editor)
Editore: John Wiley & Sons Inc (2011)
ISBN 10: 0470697431 ISBN 13: 9780470697436
Nuovi Rilegato Quantità: 2
Da
Revaluation Books
(Exeter, Regno Unito)
Valutazione libreria
[?]

Descrizione libro John Wiley & Sons Inc, 2011. Hardcover. Condizione libro: Brand New. 1st edition. 388 pages. 9.25x6.00x1.00 inches. In Stock. Codice libro della libreria __0470697431

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 143,92
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 6,78
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi