Articoli correlati a Differential Geometry Of Curves A: Second Edition

Differential Geometry Of Curves A: Second Edition - Brossura

 
9780486806990: Differential Geometry Of Curves A: Second Edition

Sinossi

Uno dei testi più ampiamente utilizzati nel suo campo, questo volume .È stato ristampato ininterrottamente dalla sua pubblicazione iniziale del 1976. L'esposizione chiara e ben scritta .È arricchita da molti esempi ed esercizi, alcuni con suggerimenti e risposte. I prerequisiti includono un corso di laurea triennale in algebra lineare e una certa familiarità con il calcolo di più variabili.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Manfredo P. do Carmo is a Brazilian mathematician and authority in the very active field of differential geometry. He is an emeritus researcher at Rio's National Institute for Pure and Applied Mathematics and the author of Differential Forms and Applications.

Dalla quarta di copertina

One of the most widely used texts in its field, this volume introduces the differential geometry of curves and surfaces in both local and global aspects. The presentation departs from the traditional approach with its more extensive use of elementary linear algebra and its emphasis on basic geometrical facts rather than machinery or random details. Many examples and exercises enhance the clear, well-written exposition, along with hints and answers to some of the problems.
The treatment begins with a chapter on curves, followed by explorations of regular surfaces, the geometry of the Gauss map, the intrinsic geometry of surfaces, and global differential geometry. Suitable for advanced undergraduates and graduate students of mathematics, this text's prerequisites include an undergraduate course in linear algebra and some familiarity with the calculus of several variables. For this second edition, the author has corrected, revised, and updated the entire volume.
Dover revised and updated republication of the edition originally published by Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1976.
www.doverpublications.com

Estratto. © Ristampato con autorizzazione. Tutti i diritti riservati.

Differential Geometry of Curves & Surfaces

Revised & Updated

By Manfredo P. Do Carmo

Dover Publications, Inc.

Copyright © 2016 Manfredo P. do Carmo
All rights reserved.
ISBN: 978-0-486-80699-0

CHAPTER 1

Curves


1-1. Introduction

The differential geometry of curves and surfaces has two aspects. One, which may be called classical differential geometry, started with the beginnings of calculus. Roughly speaking, classical differential geometry is the study of local properties of curves and surfaces. By local properties we mean those properties which depend only on the behavior of the curve or surface in the neighborhood of a point. The methods which have shown themselves to be adequate in the study of such properties are the methods of differential calculus. Because of this, the curves and surfaces considered in differential geometry will be defined by functions which can be differentiated a certain number of times.

The other aspect is the so-called global differential geometry. Here one studies the influence of the local properties on the behavior of the entire curve or surface. We shall come back to this aspect of differential geometry later in the book.

Perhaps the most interesting and representative part of classical differential geometry is the study of surfaces. However, some local properties of curves appear naturally while studying surfaces. We shall therefore use this first chapter for a brief treatment of curves.

The chapter has been organized in such a way that a reader interested mostly in surfaces can read only Secs. 1-2 through 1-5. Sections 1-2 through 1-4 contain essentially introductory material (parametrized curves, arc length, vector product), which will probably be known from other courses and is included here for completeness. Section 1-5 is the heart of the chapter and contains the material of curves needed for the study of surfaces. For those wishing to go a bit further on the subject of curves, we have included Secs. 1-6 and 1-7.


1-2. Parametrized Curves

We denote by R3 the set of triples (x, y, z) of real numbers. Our goal is to characterize certain subsets of R3 (to be called curves) that are, in a certain sense, one- dimensional and to which the methods of differential calculus can be applied. A natural way of defining such subsets is through differentiable functions. We say that a real function of a real variable is differentiable (or smooth) if it has, at all points, derivatives of all orders (which are automatically continuous). A first definition of curve, not entirely satisfactory but sufficient for the purposes of this chapter, is the following.

DEFINITION.A parametrized differentiable curve is a differentiable map a: I -> R3of an open interval I = (a, b) of the real line R into R3.

The word differentiable in this definition means that a is a correspondence which maps each t [member of] I into a point a (t) = (x t), y (t), z(t)) [member of] R3 in such a way that the functions x (t), y (t), z (t) are differentiable. The variable t is called the parameter of the curve. The word interval is taken in a generalized sense, so that we do not exclude the cases a = -8, b = +8.

If we denote by x'(t) the first derivative of x at the point t and use similar notations for the functions y and z, the vector (x'(t), y'(t), z'(t)) = a'(t) [member of] R3 is called the tangent vector (or velocity vector) of the curve a at t. The image set a(I) [subset] R3 is called the trace of a. As illustrated by Example 5 below, one should carefully distinguish a parametrized curve, which is a map, from its trace, which is a subset of R3

A warning about terminology. Many people use the term "infinitely differentiable" for functions which have derivatives of all orders and reserve the word "differentiable" to mean that only the existence of the first derivative is required. We shall not follow this usage.

Example 1. The parametrized differentiable curve given by

a(t) = (a cos t, a sin t, bt), t [member of] R,

has as its trace in R3 a helix of pitch 2pb on the cylinder x2 + y2 = a2 The parameter t here measures the angle which the x axis makes with the line joining the origin 0 to the projection of the point a(t) over the xy plane (see Fig. 1-1).

Example 2. The map a: R -> Rsup>2 given by a(t) = (t3t3, t2 [member of] R, is a parametrized differentiable curve which has Fig. 1-2 as its trace. Notice that a'(0) = (0,0); that is, the velocity vector is zero for t = 0.

Example 3. The map a: R ->R2 given by a (t) = (t3 - 4t, t2] - 4), t [member of] R, is a parametrized differentiable curve (see Fig. 1-3). Notice that a(2) = a(-2) = (0, 0); that is, the map a is not one-to-one.

Example 4. The map a: R ->R2 given by a(t)) = (t, |t]|), t [member of] R, is not a parametrized differentiable curve, since |t]| is not differentiable at t = 0 (Fig. 1-4).

Example 5. The two distinct parametrized curves

a(t) = (cos t, sin t),

ß(t) = (cos 2t, sin 2t),

where t [member of] (0 - [??], 2p + [??]), [??] > 0, have the same trace, namely, the circle x2 + y2 = 1. Notice that the velocity vector of the second curve is the double of the first one (Fig. 1-5).

We shall now recall briefly some properties of the inner (or dot) product of vectors in R3. Let u = (u1, u2, u3) [member of] R3 and define its norm (or length) by

|u| = [square root of u21 + u22 + u23.

Geometrically, [absolute value of u] is the distance from the point (u1, u2, u3 to the origin 0 = (0,0,0). Now, let u = (u1, u2, u3) and v = (v1, v2, v3) belong to R3, and let p 0 = f = p, be the angle formed by the segments 0 u and 0 v. The inner product u x v is defined by (Fig. 1-6)

u x v = |u||v| cos?.

The following properties hold:

1. Assume that u and v are nonzero vectors. Then u x v = 0 if and only if u is orthogonal to v.

2. u x v = v x u.

3. ?(u x v) = ?u x v = u x ?v.

4. u x (v + w) = u x v + u x w.

A useful expression for the inner product can be obtained as follows. Let [e1] = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1). It is easily checked that ei x ej = 1 if i = j and that ei x ej = 0 if i ? j, where i, j = 1, 2, 3. Thus, by writing

u = u1 e1 + u2 e2 + u3 e3, v = v1 e1 + v2 e2 + v3e3,

and using properties 2 to 4, we obtain

u x v = u1 v1 + u2 v2 + u3 v3.

From the above expression it follows that if u(t) and v(t), t [member of] I, are differentiable curves, then u(t) x v(t) is a differentiable function, and

d/dt (u(t) x v(t)) = u'(t) x v(t) + u(t) x v'(t).


EXERCISES

1. Find a parametrized curve a(t) whose trace is the circle x2 + y2 = 1 such that a(t) runs clockwise around the circle with a(0) = (0, 1).

2. Let a(t) be a parametrized curve which does not pass through the origin. If a (t)0 is a point of the trace of a closest to the origin and a'(t)0 ? 0, show that the position vector a(t)0 is orthogonal to a'(t)0.

3. A parametrized curve [a(t) has the property that its second derivative [a"(t) is identically zero. What can be said about a?

4. Let a: I ->R3 be a parametrized curve and let v [member of] R3 be a fixed vector. Assume that a]'(t) is orthogonal to v for all t [member of] I and that a(0) is also orthogonal to v. Prove that a(t) is orthogonal to v for all t [member of] I.

5. Let a: I ->R3 be a parametrized curve, with a'(t) ? 0 for all t [member of] I. Show that |a(t)| is a nonzero constant if and only if a(t)) is orthogonal to a'(t) for all t [member of] I.


1-3. Regular Curves; Arc Length


Let a: I ->R3 be a parametrized differentiable curve. For each t [member of] I where a'(t) [not member of] 0, there is a well-defined straight line, which contains the point a: I and the vector a' (t). This line is called the tangent line to a at t. For the study of the differential geometry of a curve it is essential that there exists such a tangent line at every point. Therefore, we call any point t where a'(t) = 0 a singular point of a and restrict our attention to curves without singular points. Notice that the point t = 0 in Example 2 of Sec. 1-2 is a singular point.

DEFINITION.A parametrized differentiable curve a: I -> R3is said to be regular if a'(t) ? 0 for all t [member of] I.

From now on we shall consider only regular parametrized differentiable curves (and, for convenience, shall usually omit the word differentiable).

Given [t.sub.0] [member of] I, the arc length of a regular parametrized curve a: I ->R3 from the point t0, is by definition

[MATHEMATICAL EXPRESSION OMITTED]

where?

[MATHEMATICAL EXPRESSION OMITTED]

is the length of the vector a'(t)ITL. Since a'(t) ? 0, the arc length s is a differentiable function of t and ds/dt = |a'(t)]|.

In Exercise 8 we shall present a geometric justification for the above definition of arc length.

It can happen that the parameter t is already the arc length measured from some point. In this case, ds/dt = 1 = |a'(t)|; that is, the velocity vector has constant length equal to 1. Conversely, if |a'(t)| [equivalent] 1, then

[MATHEMATICAL EXPRESSION OMITTED]

i.e., t is the arc length of a measured from some point.

To simplify our exposition, we shall restrict ourselves to curves parametrized by arc length; we shall see later (see Sec. 1-5) that this restriction is not essential. In general, it is not necessary to mention the origin of the arc length s, since most concepts are defined only in terms of the derivatives of a(s).

It is convenient to set still another convention. Given the curve a parametrized by arc length s [member of] (a, b), we may consider the curve ß defined in (-b, -a) by ß(-s) = a(s), which has the same trace as the first one but is described in the opposite direction. We say, then, that these two curves differ by a change of orientation.


EXERCISES

1. Show that the tangent lines to the regular parametrized curve a(t) = (3t, 3t2, 2t3) make a constant angle with the line y = 0, z = x.

2. A circular disk of radius 1 in the plane xy rolls without slipping along the x axis. The figure described by a point of the circumference of the disk is called a cycloid (Fig. 1-7).

*a. Obtain a parametrized curve a: R -> R2 the trace of which is the cycloid, and determine its singular points.

b. Compute the arc length of the cycloid corresponding to a complete rotation of the disk.

3. Let 0A = 2a be the diameter of a circle S1 and 0y and AV be the tangents to S1 at 0 and A, respectively. A half-line r is drawn from 0 which meets the circle S1 at C and the line AV at B. On 0B mark off the segment 0p = CB. If we rotate r about 0, the point p will describe a curve called the cissoid of Diocles. By taking 0A as the x axis and 0Y as the y axis, prove that

a. The trace of

[MATHEMATICAL EXPRESSION OMITTED]

is the cissoid of Diocles (t = tan ?; see Fig. 1-8).

b. The origin (0, 0) is a singular point of the cissoid.

c. As t -> 8, a(t)) approaches the line x = 2a, and a'(t) -> 0, 2a. Thus, as t [right arrow] 8, the curve and its tangent approach the line x = 2a; we say that x = 2a is an asymptote to the cissoid.

4. Let a: (0, p) ->R2 be given by

a(t) = (sin , cost t + log tan t/2),

where t is the angle that the y axis makes with the vector a'(t). The trace of a is called the tractrix (Fig. 1-9). Show that

a. a is a differentiable parametrized curve, regular except at t = p/2.

b. The length of the segment of the tangent of the tractrix between the point of tangency and the y axis is constantly equal to 1.

5. Let a: (-1, +8) ->Rsup>2 be given by

a(t) = (3at/ 1 + t3, 3at2/ 1 + t3).

Prove that:

a. For t = 0, a is tangent to the x axis.

b. As t -> + 8, a(t) -> (0, 0) and a'(t) -> (0, 0).

c. Take the curve with the opposite orientation. Now, as t -> -1, the curve and its tangent approach the line x + y + a = 0.

The figure obtained by completing the trace of a in such a way that it becomes symmetric relative to the line y = x is called the folium of Descartes (see Fig. 1-10.

6. Let a(t) = (aebt cos t], aebt] sin t), t [member of] R, a and b constants, a > 0, b< 0, be a parametrized curve.

a. Show that as t -> +8, a(t) approaches the origin 0, spiraling around it (because of this, the trace of a is called the logarithmic spiral; see Fig. 1-11).

b. Show that a'(t)K -> (0, 0) as t -> +8 and that

[MATHEMATICAL EXPRESSION OMITTED]

is finite; that is, a has finite arc length in t0, 8).

Figure 1-11. Logarithmic spiral.

7. A map a I ->R3 is called a curve of class Ck] if each of the coordinate functions in the expression a(t) = (x(t)], y(t), z(t)) has continuous derivatives up to order k. If a is merely continuous, we say that a is of class C0. A curve a is called simple if the map a is one-to-one. Thus, the curve in Example 3 of Sec. 1-2 is not simple.


(Continues...)
Excerpted from Differential Geometry of Curves & Surfaces by Manfredo P. Do Carmo. Copyright © 2016 Manfredo P. do Carmo. Excerpted by permission of Dover Publications, Inc..
All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.
Excerpts are provided by Dial-A-Book Inc. solely for the personal use of visitors to this web site.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: molto buono
Gently read. May have name of previous...
Visualizza questo articolo

EUR 10,32 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

EUR 8,08 per la spedizione da Regno Unito a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9781482247343: Differential Geometry of Curves and Surfaces

Edizione in evidenza

ISBN 10:  1482247348 ISBN 13:  9781482247343
Casa editrice: Chapman and Hall/CRC, 2015
Rilegato

Risultati della ricerca per Differential Geometry Of Curves A: Second Edition

Immagini fornite dal venditore

Do Carmo, Manfredo P.
Editore: Dover Publications, 2016
ISBN 10: 0486806995 ISBN 13: 9780486806990
Antico o usato Brossura

Da: -OnTimeBooks-, Phoenix, AZ, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: very_good. Gently read. May have name of previous ownership, or ex-library edition. Binding tight; spine straight and smooth, with no creasing; covers clean and crisp. Minimal signs of handling or shelving. 100% GUARANTEE! Shipped with delivery confirmation, if youâre not satisfied with purchase please return item for full refund. Ships USPS Media Mail. Codice articolo OTV.0486806995.VG

Contatta il venditore

Compra usato

EUR 19,70
Convertire valuta
Spese di spedizione: EUR 10,32
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

CARMO, MANFREDO P DO
Editore: Dover Publications, 2016
ISBN 10: 0486806995 ISBN 13: 9780486806990
Nuovo Brossura

Da: Speedyhen, London, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: NEW. Codice articolo NW9780486806990

Contatta il venditore

Compra nuovo

EUR 29,37
Convertire valuta
Spese di spedizione: EUR 8,08
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 7 disponibili

Aggiungi al carrello

Foto dell'editore

Manfredo P. do Carmo
Editore: Dover Publications Inc., 2017
ISBN 10: 0486806995 ISBN 13: 9780486806990
Nuovo Brossura

Da: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. 2016. Updated, Revised. Paperback. Num Pages: 512 pages. BIC Classification: PBMS. Category: (G) General (US: Trade). Dimension: 156 x 242 x 30. Weight in Grams: 706. . . . . . Codice articolo V9780486806990

Contatta il venditore

Compra nuovo

EUR 35,80
Convertire valuta
Spese di spedizione: EUR 2,00
Da: Irlanda a: Italia
Destinazione, tempi e costi

Quantità: 7 disponibili

Aggiungi al carrello

Foto dell'editore

Manfredo P. do Carmo
Editore: Dover Publications Inc., 2017
ISBN 10: 0486806995 ISBN 13: 9780486806990
Nuovo PAP

Da: PBShop.store UK, Fairford, GLOS, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

PAP. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo GB-9780486806990

Contatta il venditore

Compra nuovo

EUR 32,59
Convertire valuta
Spese di spedizione: EUR 6,38
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 7 disponibili

Aggiungi al carrello

Foto dell'editore

Do Carmo, Manfredo P.
Editore: Dover Publications, 2016
ISBN 10: 0486806995 ISBN 13: 9780486806990
Nuovo Brossura

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9780486806990_new

Contatta il venditore

Compra nuovo

EUR 32,35
Convertire valuta
Spese di spedizione: EUR 10,40
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 7 disponibili

Aggiungi al carrello

Foto dell'editore

Manfredo P. do Carmo
Editore: Dover Publications Inc., 2016
ISBN 10: 0486806995 ISBN 13: 9780486806990
Nuovo Paperback / softback

Da: THE SAINT BOOKSTORE, Southport, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback / softback. Condizione: New. New copy - Usually dispatched within 4 working days. 720. Codice articolo B9780486806990

Contatta il venditore

Compra nuovo

EUR 31,55
Convertire valuta
Spese di spedizione: EUR 11,85
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Manfredo P. Do Carmo
ISBN 10: 0486806995 ISBN 13: 9780486806990
Nuovo Paperback

Da: Rarewaves.com UK, London, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: New. One of the most widely used texts in its field, this volume has been continuously in print since its initial 1976 publication. The clear, well-written exposition is enhanced by many examples and exercises, some with hints and answers. Prerequisites include an undergraduate course in linear algebra and some familiarity with the calculus of several variables. Codice articolo LU-9780486806990

Contatta il venditore

Compra nuovo

EUR 41,79
Convertire valuta
Spese di spedizione: EUR 2,31
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

Manfredo P. do Carmo
Editore: Dover Publications Inc., 2016
ISBN 10: 0486806995 ISBN 13: 9780486806990
Nuovo Brossura

Da: Kennys Bookstore, Olney, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. 2016. Updated, Revised. Paperback. Num Pages: 512 pages. BIC Classification: PBMS. Category: (G) General (US: Trade). Dimension: 156 x 242 x 30. Weight in Grams: 706. . . . . . Books ship from the US and Ireland. Codice articolo V9780486806990

Contatta il venditore

Compra nuovo

EUR 43,74
Convertire valuta
Spese di spedizione: EUR 1,89
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 7 disponibili

Aggiungi al carrello

Foto dell'editore

Do Carmo, Manfredo P.
ISBN 10: 0486806995 ISBN 13: 9780486806990
Nuovo Brossura

Da: Books Puddle, New York, NY, U.S.A.

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. pp. 512. Codice articolo 26374461843

Contatta il venditore

Compra nuovo

EUR 38,93
Convertire valuta
Spese di spedizione: EUR 7,75
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Do Carmo, Manfredo P.
Editore: Dover Publications, 2016
ISBN 10: 0486806995 ISBN 13: 9780486806990
Nuovo Brossura

Da: GreatBookPricesUK, Woodford Green, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 26679289-n

Contatta il venditore

Compra nuovo

EUR 29,36
Convertire valuta
Spese di spedizione: EUR 17,35
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Vedi altre 15 copie di questo libro

Vedi tutti i risultati per questo libro