This book describes theoretical advances in the study of artificial neural networks.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
'The book is a useful and readable mongraph. For beginners it is a nice introduction to the subject, for experts a valuable reference.' Zentralblatt MATH
This book describes theoretical advances in the study of artificial neural networks. It explores probabilistic models of supervised learning problems, and addresses the key statistical and computational questions. It is intended to be accessible to researchers and graduate students in computer science, engineering, and mathematics.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 17,41 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiEUR 11,61 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiDa: Better World Books: West, Reno, NV, U.S.A.
Condizione: Very Good. Former library book; may include library markings. Used book that is in excellent condition. May show signs of wear or have minor defects. Codice articolo 12356663-75
Quantità: 1 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 1st edition. 403 pages. 8.75x5.75x0.75 inches. In Stock. This item is printed on demand. Codice articolo __052111862X
Quantità: 1 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9780521118620_new
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 6952043-n
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 6952043-n
Quantità: Più di 20 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book describes theoretical advances in the study of artificial neural networks. It explores probabilistic models of supervised learning problems, and addresses the key statistical and computational questions. It is intended to be accessible to research. Codice articolo 446926579
Quantità: Più di 20 disponibili
Da: Chiron Media, Wallingford, Regno Unito
Paperback. Condizione: New. Codice articolo 6666-IUK-9780521118620
Quantità: 10 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 1st edition. 403 pages. 8.75x5.75x0.75 inches. In Stock. Codice articolo x-052111862X
Quantità: 2 disponibili
Da: TextbookRush, Grandview Heights, OH, U.S.A.
Condizione: Good. Ships SAME or NEXT business day. We Ship to APO/FPO addr. Choose EXPEDITED shipping and receive in 2-5 business days within the United States. See our member profile for customer support contact info. We have an easy return policy. Codice articolo 52284459
Quantità: 1 disponibili
Da: CitiRetail, Stevenage, Regno Unito
Paperback. Condizione: new. Paperback. This book describes theoretical advances in the study of artificial neural networks. It explores probabilistic models of supervised learning problems, and addresses the key statistical and computational questions. Research on pattern classification with binary-output networks is surveyed, including a discussion of the relevance of the Vapnik-Chervonenkis dimension, and calculating estimates of the dimension for several neural network models. A model of classification by real-output networks is developed, and the usefulness of classification with a 'large margin' is demonstrated. The authors explain the role of scale-sensitive versions of the Vapnik-Chervonenkis dimension in large margin classification, and in real prediction. They also discuss the computational complexity of neural network learning, describing a variety of hardness results, and outlining two efficient constructive learning algorithms. The book is self-contained and is intended to be accessible to researchers and graduate students in computer science, engineering, and mathematics. This book describes theoretical advances in the study of artificial neural networks. It explores probabilistic models of supervised learning problems, and addresses the key statistical and computational questions. It is intended to be accessible to researchers and graduate students in computer science, engineering, and mathematics. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Codice articolo 9780521118620
Quantità: 1 disponibili