Articoli correlati a Introduction to Toric Varieties

Introduction to Toric Varieties - Rilegato

 
9780691033327: Introduction to Toric Varieties

Sinossi

Toric varieties are algebraic varieties arising from elementary geometric and combinatorial objects such as convex polytopes in Euclidean space with vertices on lattice points. Since many algebraic geometry notions such as singularities, birational maps, cycles, homology, intersection theory, and Riemann-Roch translate into simple facts about polytopes, toric varieties provide a marvelous source of examples in algebraic geometry. In the other direction, general facts from algebraic geometry have implications for such polytopes, such as to the problem of the number of lattice points they contain. In spite of the fact that toric varieties are very special in the spectrum of all algebraic varieties, they provide a remarkably useful testing ground for general theories.


The aim of this mini-course is to develop the foundations of the study of toric varieties, with examples, and describe some of these relations and applications. The text concludes with Stanley's theorem characterizing the numbers of simplicies in each dimension in a convex simplicial polytope. Although some general theorems are quoted without proof, the concrete interpretations via simplicial geometry should make the text accessible to beginners in algebraic geometry.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Contenuti

Ch. 1 Definitions and examples
1.1 Introduction 3
1.2 Convex polyhedral cones 8
1.3 Affine toric varieties 15
1.4 Fans and toric varieties 20
1.5 Toric varieties from polytopes 23
Ch. 2 Singularities and compactness
2.1 Local properties of toric varieties 28
2.2 Surfaces; quotient singularities 31
2.3 One-parameter subgroups; limit points 36
2.4 Compactness and properness 39
2.5 Nonsingular surfaces 42
2.6 Resolution of singularities 45
Ch. 3 Orbits, topology, and line bundles
3.1 Orbits 51
3.2 Fundamental groups and Euler characteristics 56
3.3 Divisors 60
3.4 Line bundles 63
3.5 Cohomology of line bundles 73
Ch. 4 Moment maps and the tangent bundle
4.1 The manifold with singular corners 78
4.2 Moment map 81
4.3 Differentials and the tangent bundle 85
4.4 Serre duality 87
4.5 Betti numbers 91
Ch. 5 Intersection theory
5.1 Chow groups 96
5.2 Cohomology of nonsingular toric varieties 101
5.3 Riemann-Roch theorem 108
5.4 Mixed volumes 114
5.5 Bezout theorem 121
5.6 Stanley's theorem 124
Notes 131
References 149
Index of Notation 151
Index 155

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Ex-library with stamp and library-signature...
Visualizza questo articolo

EUR 7,00 per la spedizione da Germania a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9780691000497: Introduction to Toric Varieties. (AM-131)

Edizione in evidenza

ISBN 10:  0691000492 ISBN 13:  9780691000497
Casa editrice: Princeton University Press, 1993
Brossura

Risultati della ricerca per Introduction to Toric Varieties

Immagini fornite dal venditore

Fulton, William:
ISBN 10: 0691033323 ISBN 13: 9780691033327
Antico o usato Softcover

Da: Antiquariat Bookfarm, Löbnitz, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Softcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ancien Exemplaire de bibliothèque avec signature et cachet. BON état, quelques traces d'usure. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. 14 FUL 9780691033327 Sprache: Englisch Gewicht in Gramm: 550. Codice articolo 2504934

Contatta il venditore

Compra usato

EUR 24,50
Convertire valuta
Spese di spedizione: EUR 7,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello