Statistics, Data Mining, and Machine Learning in Astronomy: A Practical Python Guide for the Analysis of Survey Data (Princeton Series in Modern Observational Astronomy)

Valutazione media 4
( su 16 valutazioni fornite da Goodreads )
 
9780691151687: Statistics, Data Mining, and Machine Learning in Astronomy: A Practical Python Guide for the Analysis of Survey Data (Princeton Series in Modern Observational Astronomy)

As telescopes, detectors, and computers grow ever more powerful, the volume of data at the disposal of astronomers and astrophysicists will enter the petabyte domain, providing accurate measurements for billions of celestial objects. This book provides a comprehensive and accessible introduction to the cutting-edge statistical methods needed to efficiently analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the upcoming Large Synoptic Survey Telescope. It serves as a practical handbook for graduate students and advanced undergraduates in physics and astronomy, and as an indispensable reference for researchers.



Statistics, Data Mining, and Machine Learning in Astronomy presents a wealth of practical analysis problems, evaluates techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. For all applications described in the book, Python code and example data sets are provided. The supporting data sets have been carefully selected from contemporary astronomical surveys (for example, the Sloan Digital Sky Survey) and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, evaluate the methods, and adapt them to their own fields of interest.



  • Describes the most useful statistical and data-mining methods for extracting knowledge from huge and complex astronomical data sets

  • Features real-world data sets from contemporary astronomical surveys

  • Uses a freely available Python codebase throughout

  • Ideal for students and working astronomers

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

From the Inside Flap:


"This comprehensive book is surely going to be regarded as one of the foremost texts in the new discipline of astrostatistics."--Joseph M. Hilbe, president of the International Astrostatistics Association


"In the era of data-driven science, many students and researchers have faced a barrier to entry. Until now, they have lacked an effective tutorial introduction to the array of tools and code for data mining and statistical analysis. The comprehensive overview of techniques provided in this book, accompanied by a Python toolbox, free readers to explore and analyze the data rather than reinvent the wheel."--Tony Tyson, University of California, Davis


"The authors are leading experts in the field who have utilized the techniques described here in their own very successful research. Statistics, Data Mining, and Machine Learning in Astronomy is a book that will become a key resource for the astronomy community."--Robert J. Hanisch, Space Telescope Science Institute


About the Author:

Željko Ivezić is professor of astronomy at the University of Washington. Andrew J. Connolly is professor of astronomy at the University of Washington. Jacob T. VanderPlas is an NSF postdoctoral research fellow in astronomy and computer science at the University of Washington. Alexander Gray is professor of computer science at Georgia Institute of Technology.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

I migliori risultati di ricerca su AbeBooks

1.

Ivezic, Zeljko, Connolly, Andrew J., VanderPlas, Jacob T, Gray, Alexander
Editore: Princeton University Press (2014)
ISBN 10: 0691151687 ISBN 13: 9780691151687
Nuovi Rilegato Quantità: 2
Valutazione libreria
[?]

Descrizione libro Princeton University Press, 2014. Condizione libro: New. Provides an introduction to the statistical methods needed to analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the upcoming Large Synoptic Survey Telescope. Series: Princeton Series in Modern Observational Astronomy. Num Pages: 552 pages, 12 color illus. 2 halftones. 173 line illus. BIC Classification: PBT; PGG; UNF; UYQM. Category: (P) Professional & Vocational. Dimension: 184 x 256 x 39. Weight in Grams: 1348. . 2014. Hardcover. . . . . . Codice libro della libreria V9780691151687

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 70,06
Convertire valuta

Aggiungere al carrello

Spese di spedizione: GRATIS
Da: Irlanda a: U.S.A.
Destinazione, tempi e costi

2.

Ivezic, Zeljko
Editore: Princeton University Press (2014)
ISBN 10: 0691151687 ISBN 13: 9780691151687
Nuovi Quantità: > 20
Da
Books2Anywhere
(Fairford, GLOS, Regno Unito)
Valutazione libreria
[?]

Descrizione libro Princeton University Press, 2014. HRD. Condizione libro: New. New Book. Shipped from UK in 4 to 14 days. Established seller since 2000. Codice libro della libreria WP-9780691151687

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 61,89
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 10,07
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

3.

Zeljko Ivezic
ISBN 10: 0691151687 ISBN 13: 9780691151687
Nuovi Quantità: 3
Da
Books_Universe
(Sugarland, TX, U.S.A.)
Valutazione libreria
[?]

Descrizione libro Condizione libro: New. Brand New. US Edition Book. We do not ship to Military Addresses. Fast Shipping with Order Tracking. For Standard Shipping 7-8 business days & Expedite Shipping 4-6 business days, after shipping. Codice libro della libreria 0691151687-RMX

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 74,33
Convertire valuta

Aggiungere al carrello

Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

4.

Ivezic, Zeljko; Connolly, Andrew J.; VanderPlas, Jacob T; Gray, Alexander
Editore: Princeton University Press (2014)
ISBN 10: 0691151687 ISBN 13: 9780691151687
Nuovi Rilegato Quantità: 1
Da
Ergodebooks
(RICHMOND, TX, U.S.A.)
Valutazione libreria
[?]

Descrizione libro Princeton University Press, 2014. Hardcover. Condizione libro: New. Codice libro della libreria DADAX0691151687

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 71,11
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 3,41
In U.S.A.
Destinazione, tempi e costi

5.

Ivezic, Zeljko, Connolly, Andrew J., VanderPlas, Jacob T, Gray, Alexander
Editore: Princeton University Press
ISBN 10: 0691151687 ISBN 13: 9780691151687
Nuovi Rilegato Quantità: 2
Da
Kennys Bookstore
(Olney, MD, U.S.A.)
Valutazione libreria
[?]

Descrizione libro Princeton University Press. Condizione libro: New. Provides an introduction to the statistical methods needed to analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the upcoming Large Synoptic Survey Telescope. Series: Princeton Series in Modern Observational Astronomy. Num Pages: 552 pages, 12 color illus. 2 halftones. 173 line illus. BIC Classification: PBT; PGG; UNF; UYQM. Category: (P) Professional & Vocational. Dimension: 184 x 256 x 39. Weight in Grams: 1348. . 2014. Hardcover. . . . . Books ship from the US and Ireland. Codice libro della libreria V9780691151687

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 74,72
Convertire valuta

Aggiungere al carrello

Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

6.

Zeljko Ivezic, Andrew J. Connolly, Jacob Vanderplas
Editore: Princeton University Press, United States (2014)
ISBN 10: 0691151687 ISBN 13: 9780691151687
Nuovi Rilegato Quantità: 1
Da
The Book Depository
(London, Regno Unito)
Valutazione libreria
[?]

Descrizione libro Princeton University Press, United States, 2014. Hardback. Condizione libro: New. Language: English . Brand New Book. As telescopes, detectors, and computers grow ever more powerful, the volume of data at the disposal of astronomers and astrophysicists will enter the petabyte domain, providing accurate measurements for billions of celestial objects. This book provides a comprehensive and accessible introduction to the cutting-edge statistical methods needed to efficiently analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the upcoming Large Synoptic Survey Telescope. It serves as a practical handbook for graduate students and advanced undergraduates in physics and astronomy, and as an indispensable reference for researchers. Statistics, Data Mining, and Machine Learning in Astronomy presents a wealth of practical analysis problems, evaluates techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. For all applications described in the book, Python code and example data sets are provided. The supporting data sets have been carefully selected from contemporary astronomical surveys (for example, the Sloan Digital Sky Survey) and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, evaluate the methods, and adapt them to their own fields of interest. * Describes the most useful statistical and data-mining methods for extracting knowledge from huge and complex astronomical data sets * Features real-world data sets from contemporary astronomical surveys * Uses a freely available Python codebase throughout * Ideal for students and working astronomers. Codice libro della libreria AAU9780691151687

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 75,36
Convertire valuta

Aggiungere al carrello

Spese di spedizione: GRATIS
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

7.

Zeljko Ivezic, Andrew J. Connolly, Jacob Vanderplas
Editore: Princeton University Press, United States (2014)
ISBN 10: 0691151687 ISBN 13: 9780691151687
Nuovi Rilegato Quantità: 1
Da
The Book Depository US
(London, Regno Unito)
Valutazione libreria
[?]

Descrizione libro Princeton University Press, United States, 2014. Hardback. Condizione libro: New. Language: English . Brand New Book. As telescopes, detectors, and computers grow ever more powerful, the volume of data at the disposal of astronomers and astrophysicists will enter the petabyte domain, providing accurate measurements for billions of celestial objects. This book provides a comprehensive and accessible introduction to the cutting-edge statistical methods needed to efficiently analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the upcoming Large Synoptic Survey Telescope. It serves as a practical handbook for graduate students and advanced undergraduates in physics and astronomy, and as an indispensable reference for researchers. Statistics, Data Mining, and Machine Learning in Astronomy presents a wealth of practical analysis problems, evaluates techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. For all applications described in the book, Python code and example data sets are provided. The supporting data sets have been carefully selected from contemporary astronomical surveys (for example, the Sloan Digital Sky Survey) and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, evaluate the methods, and adapt them to their own fields of interest. Describes the most useful statistical and data-mining methods for extracting knowledge from huge and complex astronomical data sets Features real-world data sets from contemporary astronomical surveys Uses a freely available Python codebase throughout Ideal for students and working astronomers. Codice libro della libreria AAU9780691151687

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 75,71
Convertire valuta

Aggiungere al carrello

Spese di spedizione: GRATIS
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

8.

?eljko Ivezi?; Andrew J. Connolly; Jacob T VanderPlas; Alexander Gray
Editore: Princeton University Press (2014)
ISBN 10: 0691151687 ISBN 13: 9780691151687
Nuovi Rilegato Quantità: 1
Da
Irish Booksellers
(Rumford, ME, U.S.A.)
Valutazione libreria
[?]

Descrizione libro Princeton University Press, 2014. Hardcover. Condizione libro: New. book. Codice libro della libreria 0691151687

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 76,06
Convertire valuta

Aggiungere al carrello

Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

9.

Eljko Ivezic, Andrew Connolly, Jacob Vanderplas, Alexander Gray, Andrew J. Connolly, Jacob T Vanderplas, Alexander Gray
Editore: Princeton University Press 2014-02-18, Princeton (2014)
ISBN 10: 0691151687 ISBN 13: 9780691151687
Nuovi Rilegato Quantità: 1
Da
Blackwell's
(Oxford, OX, Regno Unito)
Valutazione libreria
[?]

Descrizione libro Princeton University Press 2014-02-18, Princeton, 2014. hardback. Condizione libro: New. Codice libro della libreria 9780691151687

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 74,26
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 3,36
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

10.

?eljko Ivezi?; Andrew J. Connolly; Jacob T VanderPlas; Alexander Gray
Editore: Princeton University Press (2014)
ISBN 10: 0691151687 ISBN 13: 9780691151687
Nuovi Rilegato Quantità: 2
Da
Ria Christie Collections
(Uxbridge, Regno Unito)
Valutazione libreria
[?]

Descrizione libro Princeton University Press, 2014. Condizione libro: New. book. Codice libro della libreria ria9780691151687_rkm

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 77,85
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 4,33
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Vedi altre copie di questo libro

Vedi tutti i risultati per questo libro