Articoli correlati a Statistics, Data Mining, and Machine Learning in Astronomy:...

Statistics, Data Mining, and Machine Learning in Astronomy: A Practical Python Guide for the Analysis of Survey Data - Rilegato

 
9780691151687: Statistics, Data Mining, and Machine Learning in Astronomy: A Practical Python Guide for the Analysis of Survey Data

Sinossi

As telescopes, detectors, and computers grow ever more powerful, the volume of data at the disposal of astronomers and astrophysicists will enter the petabyte domain, providing accurate measurements for billions of celestial objects. This book provides a comprehensive and accessible introduction to the cutting-edge statistical methods needed to efficiently analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the upcoming Large Synoptic Survey Telescope. It serves as a practical handbook for graduate students and advanced undergraduates in physics and astronomy, and as an indispensable reference for researchers.



Statistics, Data Mining, and Machine Learning in Astronomy presents a wealth of practical analysis problems, evaluates techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. For all applications described in the book, Python code and example data sets are provided. The supporting data sets have been carefully selected from contemporary astronomical surveys (for example, the Sloan Digital Sky Survey) and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, evaluate the methods, and adapt them to their own fields of interest.


  • Describes the most useful statistical and data-mining methods for extracting knowledge from huge and complex astronomical data sets

  • Features real-world data sets from contemporary astronomical surveys

  • Uses a freely available Python codebase throughout

  • Ideal for students and working astronomers

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Željko Ivezic is professor of astronomy at the University of Washington. Andrew J. Connolly is professor of astronomy at the University of Washington. Jacob T. VanderPlas is an NSF postdoctoral research fellow in astronomy and computer science at the University of Washington. Alexander Gray is professor of computer science at Georgia Institute of Technology.

Dalla quarta di copertina

"This comprehensive book is surely going to be regarded as one of the foremost texts in the new discipline of astrostatistics."--Joseph M. Hilbe, president of the International Astrostatistics Association

"In the era of data-driven science, many students and researchers have faced a barrier to entry. Until now, they have lacked an effective tutorial introduction to the array of tools and code for data mining and statistical analysis. The comprehensive overview of techniques provided in this book, accompanied by a Python toolbox, free readers to explore and analyze the data rather than reinvent the wheel."--Tony Tyson, University of California, Davis

"The authors are leading experts in the field who have utilized the techniques described here in their own very successful research. Statistics, Data Mining, and Machine Learning in Astronomy is a book that will become a key resource for the astronomy community."--Robert J. Hanisch, Space Telescope Science Institute

Dal risvolto di copertina interno

"This comprehensive book is surely going to be regarded as one of the foremost texts in the new discipline of astrostatistics."--Joseph M. Hilbe, president of the International Astrostatistics Association

"In the era of data-driven science, many students and researchers have faced a barrier to entry. Until now, they have lacked an effective tutorial introduction to the array of tools and code for data mining and statistical analysis. The comprehensive overview of techniques provided in this book, accompanied by a Python toolbox, free readers to explore and analyze the data rather than reinvent the wheel."--Tony Tyson, University of California, Davis

"The authors are leading experts in the field who have utilized the techniques described here in their own very successful research.Statistics, Data Mining, and Machine Learning in Astronomy is a book that will become a key resource for the astronomy community."--Robert J. Hanisch, Space Telescope Science Institute

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: molto buono
Hardcover issued without dust-jacket...
Visualizza questo articolo

EUR 57,11 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

EUR 22,18 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

Risultati della ricerca per Statistics, Data Mining, and Machine Learning in Astronomy:...

Foto dell'editore

Ivezi^'c, %Zeljko,Connolly, Andrew J.,VanderPlas, Jacob T,Gray, Alexander
ISBN 10: 0691151687 ISBN 13: 9780691151687
Antico o usato Rilegato

Da: Michael Knight, Bookseller, Forest Grove, OR, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

hardcover. Condizione: Very Good. Hardcover issued without dust-jacket. Clean and solid. No tears, stains, or odors. NOT ex-library. Codice articolo mon0000010451

Contatta il venditore

Compra usato

EUR 8,73
Convertire valuta
Spese di spedizione: EUR 57,11
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Ivezic, Zeljko, Connolly, Andrew J., VanderPlas, Jacob T, Gray, Alexander
Editore: Oxford University Press, 2014
ISBN 10: 0691151687 ISBN 13: 9780691151687
Nuovo Rilegato

Da: Labyrinth Books, Princeton, NJ, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 158711

Contatta il venditore

Compra nuovo

EUR 63,24
Convertire valuta
Spese di spedizione: EUR 22,18
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 13 disponibili

Aggiungi al carrello

Foto dell'editore

Ivezi^'c, %Zeljko
ISBN 10: 0691151687 ISBN 13: 9780691151687
Nuovo Rilegato

Da: Toscana Books, AUSTIN, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardcover. Condizione: new. Excellent Condition.Excels in customer satisfaction, prompt replies, and quality checks. Codice articolo Scanned0691151687

Contatta il venditore

Compra nuovo

EUR 62,21
Convertire valuta
Spese di spedizione: EUR 25,59
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Ivezic, eljko, Connolly, Andrew J., VanderPlas, Jacob T, Gr
Editore: Oxford University Press, 2014
ISBN 10: 0691151687 ISBN 13: 9780691151687
Antico o usato Rilegato

Da: dsmbooks, Liverpool, Regno Unito

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardcover. Condizione: Very Good. Very Good. book. Codice articolo D8S0-3-M-0691151687-6

Contatta il venditore

Compra usato

EUR 101,57
Convertire valuta
Spese di spedizione: EUR 28,97
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello