Asymptotic differential algebra seeks to understand the solutions of differential equations and their asymptotics from an algebraic point of view. The differential field of transseries plays a central role in the subject. Besides powers of the variable, these series may contain exponential and logarithmic terms. Over the last thirty years, transseries emerged variously as super-exact asymptotic expansions of return maps of analytic vector fields, in connection with Tarski's problem on the field of reals with exponentiation, and in mathematical physics. Their formal nature also makes them suitable for machine computations in computer algebra systems.
This self-contained book validates the intuition that the differential field of transseries is a universal domain for asymptotic differential algebra. It does so by establishing in the realm of transseries a complete elimination theory for systems of algebraic differential equations with asymptotic side conditions. Beginning with background chapters on valuations and differential algebra, the book goes on to develop the basic theory of valued differential fields, including a notion of differential-henselianity. Next, H-fields are singled out among ordered valued differential fields to provide an algebraic setting for the common properties of Hardy fields and the differential field of transseries. The study of their extensions culminates in an analogue of the algebraic closure of a field: the Newton-Liouville closure of an H-field. This paves the way to a quantifier elimination with interesting consequences.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Matthias Aschenbrenner is professor of mathematics at the University of California, Los Angeles. Lou van den Dries is professor of mathematics at the University of Illinois, Urbana-Champaign. Joris van der Hoeven is director of research at the French National Center for Scientific Research (CNRS).
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 39,87 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiEUR 22,56 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiDa: Labyrinth Books, Princeton, NJ, U.S.A.
Condizione: New. Codice articolo 222926
Quantità: 8 disponibili
Da: Basi6 International, Irving, TX, U.S.A.
Condizione: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Codice articolo ABEJUNE24-429701
Quantità: 1 disponibili
Da: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo WP-9780691175430
Quantità: 1 disponibili
Da: Daedalus Books, Portland, OR, U.S.A.
Paperback. Condizione: Near Fine. First Edition. A nice, solid copy. ; Annals of Mathematics Studies; Vol. 195; 6 X 1.75 X 9 inches; 849 pages. Codice articolo 330450
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Kartoniert / Broschiert. Condizione: New. Über den AutorMatthias Aschenbrenner is professor of mathematics at the University of California, Los Angeles. Lou van den Dries is professor of mathematics at the University of Illinois, Urbana-Champaign. Joris van. Codice articolo 594886410
Quantità: 1 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 28186465-n
Quantità: 4 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 28186465-n
Quantità: 4 disponibili
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
PAP. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo WP-9780691175430
Quantità: 1 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: As New. Unread book in perfect condition. Codice articolo 28186465
Quantità: 4 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 28186465
Quantità: 4 disponibili