The present monograph provides a systematic and basicaIly self-eontained introduetion to a mathematieal framework eapable of ineOIporating those fundamental physical premises of general relativity and quantum meehanics which are not mutually ineonsistent, and which ean be therefore retained in the unifieation of these two fundamental areas of twentieth eentury physics. Thus, its underlying thesis is that the equivalenee principle of classical general relativity remains true at the quantum level, where it has to be reeonciled, however, with the uneertainty principle. As will be discussed in the first as weIl as in the last chapter, eonventional methods based on classical geometries and on single Hilbert space frame works for quantum meehanics have failed to aehieve such a reconciliation. On the other hand, foundational arguments suggest that new types of geometries should be introdueed. The geometries proposed and studied in this monograph are referred to as quantum geometries, sinee basic quantum principles are ineorporated into their strueture from the outset. The mathematical tools used in constructing these quantum geometries are drawn from functional analysis and fibre bundle theory, and in particular from Hilbert space the ory, group representation theory, and modern formulations of differential geometry. The developed physical eoncepts have their roots in nonrelativistic and relativistic quantum me chanics in Hilbert spaee, in classical general relativity and in quantum field theory for mas sive and gauge fields.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Preface. 1. Principles and Physical Interpretation of Quantum Geometries. 2. The Fibre Framework for Classical General Relativity. 3. Stochastic Quantum Mechanics on Phase Space. 4. Nonrelativistic Newton-Carton Quantum Geometries. 5. Relativistic Klein-Gordon Quantum Geometries. 6. Relativistic Dirac Quantum Geometries. 7. Relativistic Quantum Geometries for Spin-O Massive Fields. 8. Relativistic Quantum Geometries for Spin-1/2 Massive Fields. 9. Quantum Geometries for Electromagnetic Fields. 10. Classical and Quantum Geometries for Yang-Mills Fields. 11. Geometro-Stochastic Quantum Gravity. 12. Historical and Epistemological Perpectives on Developments in Relativity and Quantum Theory. References. Index.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 29,36 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: moluna, Greven, Germania
Gebunden. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Preface. 1. Principles and Physical Interpretation of Quantum Geometries. 2. The Fibre Framework for Classical General Relativity. 3. Stochastic Quantum Mechanics on Phase Space. 4. Nonrelativistic Newton-Carton Quantum Geometries. 5. Relativistic Klein. Codice articolo 5966482
Quantità: Più di 20 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Buch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -The present monograph provides a systematic and basicaIly self-eontained introduetion to a mathematieal framework eapable of ineOIporating those fundamental physical premises of general relativity and quantum meehanics which are not mutually ineonsistent, and which ean be therefore retained in the unifieation of these two fundamental areas of twentieth eentury physics. Thus, its underlying thesis is that the equivalenee principle of classical general relativity remains true at the quantum level, where it has to be reeonciled, however, with the uneertainty principle. As will be discussed in the first as weIl as in the last chapter, eonventional methods based on classical geometries and on single Hilbert space frame works for quantum meehanics have failed to aehieve such a reconciliation. On the other hand, foundational arguments suggest that new types of geometries should be introdueed. The geometries proposed and studied in this monograph are referred to as quantum geometries, sinee basic quantum principles are ineorporated into their strueture from the outset. The mathematical tools used in constructing these quantum geometries are drawn from functional analysis and fibre bundle theory, and in particular from Hilbert space the ory, group representation theory, and modern formulations of differential geometry. The developed physical eoncepts have their roots in nonrelativistic and relativistic quantum me chanics in Hilbert spaee, in classical general relativity and in quantum field theory for mas sive and gauge fields.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 548 pp. Englisch. Codice articolo 9780792316404
Quantità: 1 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Buch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - The present monograph provides a systematic and basicaIly self-eontained introduetion to a mathematieal framework eapable of ineOIporating those fundamental physical premises of general relativity and quantum meehanics which are not mutually ineonsistent, and which ean be therefore retained in the unifieation of these two fundamental areas of twentieth eentury physics. Thus, its underlying thesis is that the equivalenee principle of classical general relativity remains true at the quantum level, where it has to be reeonciled, however, with the uneertainty principle. As will be discussed in the first as weIl as in the last chapter, eonventional methods based on classical geometries and on single Hilbert space frame works for quantum meehanics have failed to aehieve such a reconciliation. On the other hand, foundational arguments suggest that new types of geometries should be introdueed. The geometries proposed and studied in this monograph are referred to as quantum geometries, sinee basic quantum principles are ineorporated into their strueture from the outset. The mathematical tools used in constructing these quantum geometries are drawn from functional analysis and fibre bundle theory, and in particular from Hilbert space the ory, group representation theory, and modern formulations of differential geometry. The developed physical eoncepts have their roots in nonrelativistic and relativistic quantum me chanics in Hilbert spaee, in classical general relativity and in quantum field theory for mas sive and gauge fields. Codice articolo 9780792316404
Quantità: 1 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9780792316404_new
Quantità: Più di 20 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Feb2416190180990
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The present monograph provides a systematic and basicaIly self-eontained introduetion to a mathematieal framework eapable of ineOIporating those fundamental physical premises of general relativity and quantum meehanics which are not mutually ineonsistent, and which ean be therefore retained in the unifieation of these two fundamental areas of twentieth eentury physics. Thus, its underlying thesis is that the equivalenee principle of classical general relativity remains true at the quantum level, where it has to be reeonciled, however, with the uneertainty principle. As will be discussed in the first as weIl as in the last chapter, eonventional methods based on classical geometries and on single Hilbert space frame works for quantum meehanics have failed to aehieve such a reconciliation. On the other hand, foundational arguments suggest that new types of geometries should be introdueed. The geometries proposed and studied in this monograph are referred to as quantum geometries, sinee basic quantum principles are ineorporated into their strueture from the outset. The mathematical tools used in constructing these quantum geometries are drawn from functional analysis and fibre bundle theory, and in particular from Hilbert space the ory, group representation theory, and modern formulations of differential geometry. The developed physical eoncepts have their roots in nonrelativistic and relativistic quantum me chanics in Hilbert spaee, in classical general relativity and in quantum field theory for mas sive and gauge fields. 548 pp. Englisch. Codice articolo 9780792316404
Quantità: 2 disponibili
Da: Mispah books, Redhill, SURRE, Regno Unito
Hardcover. Condizione: Like New. Like New. book. Codice articolo ERICA75807923164016
Quantità: 1 disponibili