of SAT Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7:3 3. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV 4. Complete Algorithms and Incomplete Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5. Optimization: An Iterative Refinement Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6. Local Search Algorithms for SAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 7. Global Optimization Algorithms for SAT Problem . . . . . . . . . . . . . . . . . . . . . . . . 106 8. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 9. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 10. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Ergodic Convergence in Proximal Point Algorithms with Bregman Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Osman Guier 1. Introduction . . . : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 2. Convergence for Function Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 3. Convergence for Arbitrary Maximal Monotone Operators . . . . . . . . . . . . . . . . . 161 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 Adding and Deleting Constraints in the Logarithmic Barrier Method for LP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 D. den Hertog, C. Roos, and T. Terlaky 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16(5 2. The Logarithmic Darrier Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . lG8 CONTENTS IX 3. The Effects of Shifting, Adding and Deleting Constraints . . . . . . . . . . . . . . . . . . 171 4. The Build-Up and Down Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 . . . . . . 5. Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 A Projection Method for Solving Infinite Systems of Linear Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 Hui Hu 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 2. The Projection Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 3. Convergence Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 4. Infinite Systems of Convex Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 5. Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Preface. Scheduling Multiprocessor Flow Shops; Bo Chen. The k-Walk Polyhedron; C.R. Coullard, A.B. Gamble, Jin Liu. Two Geometric Optimization Problems; B. Dasgupta, V. Roychowdhury. A Scaled Gradient Projection Algorithm for Linear Complementarity Problems; Jiu Ding. A Simple Proof for a Result of Ollerenshaw on Steiner Trees; Xiufeng Du, Ding-Zhu Du, Biao Gao, Lixue Qü. Optimization Algorithms for the Satisfiability (SAT) Problem; Jun Gu. Ergodic Convergence in Proximal Point Algorithms with Bregman Functions; O. Güler. Adding and Deleting Constraints in the Logarithmic Barrier Method for LP; D. den Hertog, C. Roos, T. Terlaky. A Projection Method for Solving Infinite Systems of Linear Inequalities; Hui Hu. Optimization Problems in Molecular Biology; Tao Jiang, Ming Li. A Dual Affine Scaling Based Algorithm for Solving Linear Semi-Infinite Programming Problems; Chih-Jen Lin, Shu-Cherng Fang, Soon-Yi Wu. A Genuine Quadratically Convergent Polynomial Interior Point Algorithm for Linear Programming; Zhi-Quan Luo, Yinyu Ye. A Modified Barrier Function Method for Linear Programming; M.R. Osborne. A New Facet Class and a Polyhedral Method for the Three-Index Assignment Problem; Liqun Qi, E. Balas, G. Gwan. A Finite Simplex-Active-Set Method for Monotropic Piecewise Quadratic Programming; R.T. Rockafellar, Jie Sun. A New Approach in the Optimization of Exponential Queues; S.H. Xu. The Euclidean Facilities Location Problem; Guoliang Xue, Changyu Wang. Optimal Design of Large-Scale Opencut Coal Mine System; Dezhuang Yang. On the Strictly Complementary Slackness Relation in Linear Programming; Shuzhong Zhang. Analytical Properties of the Central Trajectory in Interior Point Methods; Gongyun Zhao,Jishan Zhu. The Approximation of Fixed Points of Robust Mappings; Quan Zheng, Deming Zhuang.
Book by None
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
GRATIS per la spedizione da Germania a Italia
Destinazione, tempi e costiEUR 26,33 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiDa: Buchpark, Trebbin, Germania
Condizione: Sehr gut. Zustand: Sehr gut | Seiten: 390 | Sprache: Englisch | Produktart: Bücher. Codice articolo 3011533/202
Quantità: 2 disponibili
Da: RT Books, Wexford, PA, U.S.A.
Hardcover. Condizione: Near Fine. No Jacket. PUBLISHER: Kluwer Academic Pub DATE/EDITION: 1994 BINDING: Hardbound, 390 pages DUST JACKET: No jacket BOOK CONDITION: Near fine, looks unread. Very clean, tight binding, unmarked text. Codice articolo 009283
Quantità: 1 disponibili
Da: BOOKWEST, Phoenix, AZ, U.S.A.
Hardcover. Condizione: New. US SELLER SHIPS FAST FROM USA. Codice articolo INTOK-110C3-0792327853
Quantità: 1 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9780792327851_new
Quantità: Più di 20 disponibili
Da: moluna, Greven, Germania
Gebunden. Condizione: New. Preface. Scheduling Multiprocessor Flow Shops Bo Chen. The k-Walk Polyhedron C.R. Coullard, A.B. Gamble, Jin Liu. Two Geometric Optimization Problems B. Dasgupta, V. Roychowdhury. A Scaled Gradient Projection Algorithm for Linear Complementarit. Codice articolo 458438199
Quantità: Più di 20 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Feb2416190181502
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 408. Codice articolo 263069100
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 408 52:B&W 6.14 x 9.21in or 234 x 156mm (Royal 8vo) Case Laminate on White w/Gloss Lam. Codice articolo 5860211
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND pp. 408. Codice articolo 183069094
Quantità: 4 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Buch. Condizione: Neu. Neuware - 2. The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3. Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . 60 4. Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 A Simple Proof for a Result of Ollerenshaw on Steiner Trees . . . . . . . . . . 68 Xiufeng Du, Ding-Zhu Du, Biao Gao, and Lixue Qii 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 2. In the Euclidean Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3. In the Rectilinear Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4. Discussion . . . . . . . . . . . . -. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Optimization Algorithms for the Satisfiability (SAT) Problem . . . . . . . . . 72 Jun Gu 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 2. A Classification of SAT Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7:3 3. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV 4. Complete Algorithms and Incomplete Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5. Optimization: An Iterative Refinement Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6. Local Search Algorithms for SAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 7. Global Optimization Algorithms for SAT Problem . . . . . . . . . . . . . . . . . . . . . . . . 106 8. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 9. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 10. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Ergodic Convergence in Proximal Point Algorithms with Bregman Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Osman Guier 1. Introduction . . . : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 2. Convergence for Function Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 3. Convergence for Arbitrary Maximal Monotone Operators . . . . . . . . . . . . . . . . . 161 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 Adding and Deleting Constraints in the Logarithmic Barrier Method for LP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 D. den Hertog, C. Roos, and T. Terlaky 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . Codice articolo 9780792327851
Quantità: 2 disponibili