U sing stochastic differential equations we can successfully model systems that func tion in the presence of random perturbations. Such systems are among the basic objects of modern control theory. However, the very importance acquired by stochas tic differential equations lies, to a large extent, in the strong connections they have with the equations of mathematical physics. It is well known that problems in math ematical physics involve 'damned dimensions', of ten leading to severe difficulties in solving boundary value problems. A way out is provided by stochastic equations, the solutions of which of ten come about as characteristics. In its simplest form, the method of characteristics is as follows. Consider a system of n ordinary differential equations dX = a(X) dt. (O.l ) Let Xx(t) be the solution of this system satisfying the initial condition Xx(O) = x. For an arbitrary continuously differentiable function u(x) we then have: (0.2) u(Xx(t)) - u(x) = j (a(Xx(t)), ~~ (Xx(t))) dt.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Introduction. 1: Mean-square approximation of solutions of systems of stochastic differential equations. 1. Theorem on the order of convergence (theorem on the relation between approximation on a finite interval and one-step approximation). 2. Methods based on an analog of Taylor expansion of the solution. 3. Explicit and implicit methods of order 3/2 for systems with additive noises. 4. Optimal integration methods for linear systems with additive noises. 5. A strengthening of the main convergence theorem. 2: Modeling of Itô integrals. 6. Modeling Itô integrals depending on a single noise. 7. Modeling Itô integrals depending on several noises. 3: Weak approximation of solutions of systems of stochastic differential equations. 8. One-step approximation. 9. The main theorem on convergence of weak approximations and methods of order of accuracy two. 10. A method of order of accuracy three for systems with additive noises. 11. An implicit method. 12. Reducing the error of the Monte Carlo method. 4: Application of the numerical integration of stochastic equations for the Monte Carlo computation of Wiener integrals. 13. Methods of order of accuracy two for computing Wiener integrals of functionals of integral type. 14. Methods of order of accuracy four for computing Wiener integrals of functionals of exponential type. Bibliography. Index.
Book by Milstein GN
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 35,95 per la spedizione da Germania a U.S.A.
Destinazione, tempi e costiEUR 3,55 per la spedizione in U.S.A.
Destinazione, tempi e costiDa: Antiquariat Bernhardt, Kassel, Germania
Karton. Condizione: Sehr gut. Zust: Gutes Exemplar. 172 Seiten Englisch 466g. Codice articolo 483282
Quantità: 1 disponibili
Da: Buchpark, Trebbin, Germania
Condizione: Sehr gut. Zustand: Sehr gut - Gepflegter, sauberer Zustand. Aus der Auflösung einer renommierten Bibliothek. Kann Stempel beinhalten. | Seiten: 184 | Sprache: Englisch | Produktart: Sonstiges. Codice articolo 1653494/202
Quantità: 4 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Feb2416190181706
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9780792332138_new
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -U sing stochastic differential equations we can successfully model systems that func tion in the presence of random perturbations. Such systems are among the basic objects of modern control theory. However, the very importance acquired by stochas tic differential equations lies, to a large extent, in the strong connections they have with the equations of mathematical physics. It is well known that problems in math ematical physics involve 'damned dimensions', of ten leading to severe difficulties in solving boundary value problems. A way out is provided by stochastic equations, the solutions of which of ten come about as characteristics. In its simplest form, the method of characteristics is as follows. Consider a system of n ordinary differential equations dX = a(X) dt. (O.l ) Let Xx(t) be the solution of this system satisfying the initial condition Xx(O) = x. For an arbitrary continuously differentiable function u(x) we then have: (0.2) u(Xx(t)) - u(x) = j (a(Xx(t)), ~~ (Xx(t))) dt. 184 pp. Englisch. Codice articolo 9780792332138
Quantità: 2 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Introduction. 1: Mean-square approximation of solutions of systems of stochastic differential equations. 1. Theorem on the order of convergence (theorem on the relation between approximation on a finite interval and one-step approximation). 2. Methods . Codice articolo 5967292
Quantità: Più di 20 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Buch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - U sing stochastic differential equations we can successfully model systems that func tion in the presence of random perturbations. Such systems are among the basic objects of modern control theory. However, the very importance acquired by stochas tic differential equations lies, to a large extent, in the strong connections they have with the equations of mathematical physics. It is well known that problems in math ematical physics involve 'damned dimensions', of ten leading to severe difficulties in solving boundary value problems. A way out is provided by stochastic equations, the solutions of which of ten come about as characteristics. In its simplest form, the method of characteristics is as follows. Consider a system of n ordinary differential equations dX = a(X) dt. (O.l ) Let Xx(t) be the solution of this system satisfying the initial condition Xx(O) = x. For an arbitrary continuously differentiable function u(x) we then have: (0.2) u(Xx(t)) - u(x) = j (a(Xx(t)), ~~ (Xx(t))) dt. Codice articolo 9780792332138
Quantità: 1 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND pp. 184. Codice articolo 18463163
Quantità: 4 disponibili
Da: dsmbooks, Liverpool, Regno Unito
Hardcover. Condizione: Like New. Like New. book. Codice articolo D7F7-3-M-079233213X-6
Quantità: 1 disponibili