This edited collection describes recent progress on lazy learning, a branch of machine learning concerning algorithms that defer the processing of their inputs, reply to information requests by combining stored data, and typically discard constructed replies. It is the first edited volume in AI on this topic, whose many synonyms include `instance-based', `memory-based'. `exemplar-based', and `local learning', and whose topic intersects case-based reasoning and edited k-nearest neighbor classifiers. It is intended for AI researchers and students interested in pursuing recent progress in this branch of machine learning, but, due to the breadth of its contributions, it should also interest researchers and practitioners of data mining, case-based reasoning, statistics, and pattern recognition.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Editorial; D.W. Aha. Locally Weighted Learning; C.G. Atkeson, et al. Locally Weighted Learning for Control; C.G. Atkeson, et al. Voting over Multiple Condensed Nearest Neighbors; E. Alpaydin. Tolerating Concept and Sampling Shift in Lazy Learning Using Prediction Error Context Switching; M. Salganicoff. Discretisation in Lazy Learning Algorithms; Kai Ming Ting. Intelligent Selection of Instances for Prediction Functions in Lazy Learning Algorithms; Jianping Zhang, et al. The Racing Algorithm: Model Selection for Lazy Learners; O. Maron, A.W. Moore. Context-Sensitive Feature Selection for Lazy Learners; P. Domingos. Computing Optimal Attribute Weight Settings for Nearest Neighbor Algorithms; C.X. Ling, Handong Wang. A Review and Empirical Evaluation of Feature Weighting Methods for a Class of Lazy Learning Algorithms; D. Wettschereck, et al. Lazy Acquisition of Place Knowledge; P. Langley, et al. A Teaching Strategy for Memory-Based Control; J.W. Sheppard, S.L. Salzberg. Lazy Incremental Learning of Control Knowledge for Efficiently Obtaining Quality Plans; D. Borrajo, M. Veloso. IGTree: Using Trees for Compression and Classification in Lazy Learning Algorithms; W. Daelemans, et al.
Book by None
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 17,28 per la spedizione da Regno Unito a U.S.A.
Destinazione, tempi e costiGRATIS per la spedizione in U.S.A.
Destinazione, tempi e costiDa: Romtrade Corp., STERLING HEIGHTS, MI, U.S.A.
Condizione: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Codice articolo ABNR-274276
Quantità: 1 disponibili
Da: Basi6 International, Irving, TX, U.S.A.
Condizione: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Codice articolo ABEOCT25-293311
Quantità: 1 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 432. Codice articolo 26552306
Quantità: 1 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. pp. 432 52:B&W 6.14 x 9.21in or 234 x 156mm (Royal 8vo) Case Laminate on White w/Gloss Lam. Codice articolo 8377005
Quantità: 1 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. pp. 432. Codice articolo 18552312
Quantità: 1 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Feb2416190182539
Quantità: Più di 20 disponibili
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9780792345848_new
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 755663-n
Quantità: Più di 20 disponibili
Da: Grand Eagle Retail, Bensenville, IL, U.S.A.
Hardcover. Condizione: new. Hardcover. This edited collection describes recent progress on lazy learning, a branch of machine learning concerning algorithms that defer the processing of their inputs, reply to information requests by combining stored data, and typically discard constructed replies. It is the first edited volume in AI on this topic, whose many synonyms include `instance-based', `memory-based'. `exemplar-based', and `local learning', and whose topic intersects case-based reasoning and edited k-nearest neighbor classifiers. It is intended for AI researchers and students interested in pursuing recent progress in this branch of machine learning, but, due to the breadth of its contributions, it should also interest researchers and practitioners of data mining, case-based reasoning, statistics, and pattern recognition. This edited collection describes recent progress on lazy learning, a branch of machine learning concerning algorithms that defer the processing of their inputs, reply to information requests by combining stored data, and typically discard constructed replies. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9780792345848
Quantità: 1 disponibili