Targeted audience Specialists in numerical computations, especially in numerical optimiza tion, who are interested in designing algorithms with automatie result ver ification, and who would therefore be interested in knowing how general their algorithms caIi in principle be. Mathematicians and computer scientists who are interested in the theory 0/ computing and computational complexity, especially computational com plexity of numerical computations. Students in applied mathematics and computer science who are interested in computational complexity of different numerical methods and in learning general techniques for estimating this computational complexity. The book is written with all explanations and definitions added, so that it can be used as a graduate level textbook. What this book .is about Data processing. In many real-life situations, we are interested in the value of a physical quantity y that is diflicult (or even impossible) to measure directly. For example, it is impossible to directly measure the amount of oil in an oil field or a distance to a star. Since we cannot measure such quantities directly, we measure them indirectly, by measuring some other quantities Xi and using the known relation between y and Xi'S to reconstruct y. The algorithm that transforms the results Xi of measuring Xi into an estimate fj for y is called data processing.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
`The book is very well organized. The book is readable, very detailed, and intelligible. Moreover, it is exciting and gripping because the reader is often surprised by unexpected results. Everyone who is interested in modern aspects of numerical computation will enjoy reading this interesting and informative work. The book is a must for everyone who is doing research in this field.'
Mathematical Reviews, 98m
Preface. 1. Informal Introduction: Data Processing, Interval Computations, and Computational Complexity. 2. The Notions of Feasibility and NP-Hardness: Brief Introduction. 3. In the General Case, The Basic Problem of Interval Computations is Intractable. 4. Basic Problem of Interval Computations for Polynomials of a Fixed Number of Variables. 5. Basic Problem of Interval Computations for Polynomials of Fixed Order. 6. Basic Problem of Interval Computations for Polynomials with Bounded Coefficients. 7. Fixed Data Processing Algorithms, Varying Data: Still NP-Hard. 8. Fixed Data, Varying Data Processing Algorithms: Still Intractable. 9. What if we Only Allow Some Arithmetic Operations in Data Processing? 10. For Fractionally-Linear Functions, A Feasible Algorithm Solves the Basic Problem of Interval Computations. 11. Solving Interval Linear Systems is NP-Hard. 12. Interval Linear Systems: Search for Feasible Classes. 13. Physical Corollary: Prediction is Not Always Possible, Even for Linear Systems with Known Dynamics. 14. Engineering Corollary: Signal Processing is NP-Hard. 15. Bright Sides of NP-Hardness of Interval Computations I: NP-Hard Means that Good Interval Heuristics Can Solve Other Hard Problems. 16. If Input Intervals are Narrow Enough, then Interval Computations are Almost Always Easy. 17. Optimization - A First Example of a Numerical Problem in Which Interval Methods are Used: Computational Complexity and Feasibility. 18. Solving Systems of Equations. 19. Approximation of Interval Functions. 20. Solving Differential Equations. 21. Properties of Interval Matrices I: Main Results.22. Properties of Interval Matrices II: Proofs and Auxiliary Results. 23. Non-Interval Uncertainty I: Ellipsoid Uncertainty And its Generalizations. 24. Non-Interval Uncertainty II: Multi-Intervals and Their Generalizations. 25. What if Quantities are Discrete? 26. Error Estimation for Indirect Measurements: Interval Computation Problem is (Slightly) Harder than a Similar Probabilistic Computational Problem. A: In Case of Interval (or More General) Uncertainty, No Algorithm can Choose the Simplest Representative. B: Error Estimation for Indirect Measurements: Case of Approximately Known Functions. C: From Interval Computations to Modal Mathematics. D: Beyond NP: Two Roots Good, One Root Better. E: Does `NP-Hard' Really Mean `Intractable'? F: Bright Sides of NP-Hardness of Interval Computations II: Freedom of Will? G: The Worse, the Better: Paradoxical Computational Complexity of Interval Computations and Data Processing. References. Index.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Da: Ammareal, Morangis, Francia
Hardcover. Condizione: Bon. Ancien livre de bibliothèque. Traces d'usure sur la couverture. Edition 1998. Tome 10. Ammareal reverse jusqu'à 15% du prix net de cet article à des organisations caritatives. ENGLISH DESCRIPTION Book Condition: Used, Good. Former library book. Signs of wear on the cover. Edition 1998. Volume 10. Ammareal gives back up to 15% of this item's net price to charity organizations. Codice articolo E-505-577
Quantità: 1 disponibili
Da: Anybook.com, Lincoln, Regno Unito
Condizione: Fair. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. In fair condition, suitable as a study copy. No dust jacket. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,1000grams, ISBN:9780792348658. Codice articolo 8622333
Quantità: 1 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Feb2416190182711
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9780792348658_new
Quantità: Più di 20 disponibili
Da: moluna, Greven, Germania
Gebunden. Condizione: New. Codice articolo 5968310
Quantità: Più di 20 disponibili
Da: preigu, Osnabrück, Germania
Buch. Condizione: Neu. Computational Complexity and Feasibility of Data Processing and Interval Computations | V. Kreinovich (u. a.) | Buch | xii | Englisch | 1997 | Springer US | EAN 9780792348658 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand. Codice articolo 102550559
Quantità: 5 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 476. Codice articolo 26551460
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Buch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Targeted audience ¿ Specialists in numerical computations, especially in numerical optimiza tion, who are interested in designing algorithms with automatie result ver ification, and who would therefore be interested in knowing how general their algorithms caIi in principle be. ¿ Mathematicians and computer scientists who are interested in the theory 0/ computing and computational complexity, especially computational com plexity of numerical computations. ¿ Students in applied mathematics and computer science who are interested in computational complexity of different numerical methods and in learning general techniques for estimating this computational complexity. The book is written with all explanations and definitions added, so that it can be used as a graduate level textbook. What this book .is about Data processing. In many real-life situations, we are interested in the value of a physical quantity y that is diflicult (or even impossible) to measure directly. For example, it is impossible to directly measure the amount of oil in an oil field or a distance to a star. Since we cannot measure such quantities directly, we measure them indirectly, by measuring some other quantities Xi and using the known relation between y and Xi'S to reconstruct y. The algorithm that transforms the results Xi of measuring Xi into an estimate fj for y is called data processing.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 476 pp. Englisch. Codice articolo 9780792348658
Quantità: 1 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Buch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Targeted audience - Specialists in numerical computations, especially in numerical optimiza tion, who are interested in designing algorithms with automatie result ver ification, and who would therefore be interested in knowing how general their algorithms caIi in principle be. - Mathematicians and computer scientists who are interested in the theory 0/ computing and computational complexity, especially computational com plexity of numerical computations. - Students in applied mathematics and computer science who are interested in computational complexity of different numerical methods and in learning general techniques for estimating this computational complexity. The book is written with all explanations and definitions added, so that it can be used as a graduate level textbook. What this book .is about Data processing. In many real-life situations, we are interested in the value of a physical quantity y that is diflicult (or even impossible) to measure directly. For example, it is impossible to directly measure the amount of oil in an oil field or a distance to a star. Since we cannot measure such quantities directly, we measure them indirectly, by measuring some other quantities Xi and using the known relation between y and Xi'S to reconstruct y. The algorithm that transforms the results Xi of measuring Xi into an estimate fj for y is called data processing. Codice articolo 9780792348658
Quantità: 1 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. pp. 476 52:B&W 6.14 x 9.21in or 234 x 156mm (Royal 8vo) Case Laminate on White w/Gloss Lam. Codice articolo 8377851
Quantità: 1 disponibili