The problems of modern society are complex, interdisciplinary and nonlin ear. ~onlinear problems are therefore abundant in several diverse disciplines. Since explicit analytic solutions of nonlinear problems in terms of familiar, well trained functions of analysis are rarely possible, one needs to exploit various approximate methods. There do exist a number of powerful procedures for ob taining approximate solutions of nonlinear problems such as, Newton-Raphson method, Galerkins method, expansion methods, dynamic programming, itera tive techniques, truncation methods, method of upper and lower bounds and Chapligin method, to name a few. Let us turn to the fruitful idea of Chapligin, see [27] (vol I), for obtaining approximate solutions of a nonlinear differential equation u' = f(t, u), u(O) = uo. Let fl' h be such that the solutions of 1t' = h (t, u), u(O) = uo, and u' = h(t,u), u(O) = uo are comparatively simple to solve, such as linear equations, and lower order equations. Suppose that we have h(t,u) s f(t,u) s h(t,u), for all (t,u).
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Preface. 1: First Order Differential Equations. 1.0. Introduction. 1.1. Method of Upper and Lower Solutions. 1.2. Method of Quasilinearization. 1.3. Extensions. 1.4. Generalizations. 1.5. Refinements. 1.6. Notes. 2: First Order Differential Equations. (Cont.) 2.0. Introduction. 2.1. Periodic Boundary Value Problems. 2.2. Anti-Periodic Boundary Value Problems. 2.3. Interval Analysis and Quasilinearization. 2.4. Higher Order Convergence. 2.5. Another Refinement of Quasilinearization. 2.6. Extension to System of Differential Equations. 2.7. Notes. 3: Second Order Differential Equations. 3.0. Introduction. 3.1. Method of Upper and Lower Solutions. 3.2. Extension of Quasilinearization. 3.3. Generalized Quasilinearization. 3.4. General Second Order BVP. 3.5. General Second Order BVP (cont.). 3.6. Higher Order Convergence. 3.7. Notes. 4: Miscellaneous Extensions. 4.0. Introduction. 4.1. Dynamic Systems on Time Scales. 4.2. Integro-Differential Equations. 4.3. Functional Differential Equations. 4.4. Impulsive Differential Equations. 4.5. Stochastic Differential Equations. 4.6. Differential Equations in a Banach Space. 4.7. Notes. References. Index.
Book by Lakshmikantham V Vatsala AS
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 5,34 per la spedizione in U.S.A.
Destinazione, tempi e costiEUR 3,55 per la spedizione in U.S.A.
Destinazione, tempi e costiDa: Michener & Rutledge Booksellers, Inc., Baldwin City, KS, U.S.A.
Hardcover. Condizione: Very Good. Bookplate, otherwise text clean and solid; no dust jacket; Mathematics and its Applications; 9.21 X 6.14 X 0.69 inches; 286 pages. Codice articolo 208612
Quantità: 1 disponibili
Da: Buchpark, Trebbin, Germania
Condizione: Sehr gut. Zustand: Sehr gut - Gepflegter, sauberer Zustand. Aus der Auflösung einer renommierten Bibliothek. Kann Stempel beinhalten. | Seiten: 278 | Sprache: Englisch | Produktart: Bücher. Codice articolo 3023505/202
Quantità: 1 disponibili
Da: Antiquariat Bookfarm, Löbnitz, Germania
Hardcover. 287 S. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. Ex-library with stamp and library-signature. GOOD condition, some traces of use. 9780792350385 Sprache: Englisch Gewicht in Gramm: 900. Codice articolo 2351390
Quantità: 1 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Feb2416190182835
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9780792350385_new
Quantità: Più di 20 disponibili
Da: moluna, Greven, Germania
Gebunden. Condizione: New. Preface. 1: First Order Differential Equations. 1.0. Introduction. 1.1. Method of Upper and Lower Solutions. 1.2. Method of Quasilinearization. 1.3. Extensions. 1.4. Generalizations. 1.5. Refinements. 1.6. Notes. 2: First Order Differential Equations. (. Codice articolo 458440014
Quantità: Più di 20 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Buch. Condizione: Neu. Neuware - The problems of modern society are complex, interdisciplinary and nonlin ear. ~onlinear problems are therefore abundant in several diverse disciplines. Since explicit analytic solutions of nonlinear problems in terms of familiar, well trained functions of analysis are rarely possible, one needs to exploit various approximate methods. There do exist a number of powerful procedures for ob taining approximate solutions of nonlinear problems such as, Newton-Raphson method, Galerkins method, expansion methods, dynamic programming, itera tive techniques, truncation methods, method of upper and lower bounds and Chapligin method, to name a few. Let us turn to the fruitful idea of Chapligin, see [27] (vol I), for obtaining approximate solutions of a nonlinear differential equation u' = f(t, u), u(O) = uo. Let fl' h be such that the solutions of 1t' = h (t, u), u(O) = uo, and u' = h(t,u), u(O) = uo are comparatively simple to solve, such as linear equations, and lower order equations. Suppose that we have h(t,u) s f(t,u) s h(t,u), for all (t,u). Codice articolo 9780792350385
Quantità: 2 disponibili