In recent times it has been stated that many dynamical systems of classical mathematical physics and mechanics are endowed with symplectic structures, given in the majority of cases by Poisson brackets. Very often such Poisson structures on corresponding manifolds are canonical, which gives rise to the possibility of producing their hidden group theoretical essence for many completely integrable dynamical systems. It is a well understood fact that great part of comprehensive integrability theories of nonlinear dynamical systems on manifolds is based on Lie-algebraic ideas, by means of which, in particular, the classification of such compatibly bi Hamiltonian and isospectrally Lax type integrable systems has been carried out. Many chapters of this book are devoted to their description, but to our regret so far the work has not been completed. Hereby our main goal in each analysed case consists in separating the basic algebraic essence responsible for the complete integrability, and which is, at the same time, in some sense universal, i. e. , characteristic for all of them. Integrability analysis in the framework of a gradient-holonomic algorithm, devised in this book, is fulfilled through three stages: 1) finding a symplectic structure (Poisson bracket) transforming an original dynamical system into a Hamiltonian form; 2) finding first integrals (action variables or conservation laws); 3) defining an additional set of variables and some functional operator quantities with completely controlled evolutions (for instance, as Lax type representation).
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Preface. Background Notations. 1. Dynamical Systems with Homogeneous Configuration Spaces. 2. Geometric Quantization and Integrable Dynamical Systems. 3. Structures on Manifolds and Algebraic Integrability of Dynamical Systems. 4. Algebraic Methods of Quantum Statistical Mechanics and Their Applications. 5. Algebraic and Differential Geometric Aspects of the Integrability of Nonlinear Dynamical Systems on Infinite-Dimensional Functional Manifolds. References.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9780792350903_new
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 1212192-n
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 1212192-n
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In recent times it has been stated that many dynamical systems of classical mathematical physics and mechanics are endowed with symplectic structures, given in the majority of cases by Poisson brackets. Very often such Poisson structures on corresponding manifolds are canonical, which gives rise to the possibility of producing their hidden group theoretical essence for many completely integrable dynamical systems. It is a well understood fact that great part of comprehensive integrability theories of nonlinear dynamical systems on manifolds is based on Lie-algebraic ideas, by means of which, in particular, the classification of such compatibly bi Hamiltonian and isospectrally Lax type integrable systems has been carried out. Many chapters of this book are devoted to their description, but to our regret so far the work has not been completed. Hereby our main goal in each analysed case consists in separating the basic algebraic essence responsible for the complete integrability, and which is, at the same time, in some sense universal, i. e. , characteristic for all of them. Integrability analysis in the framework of a gradient-holonomic algorithm, devised in this book, is fulfilled through three stages: 1) finding a symplectic structure (Poisson bracket) transforming an original dynamical system into a Hamiltonian form; 2) finding first integrals (action variables or conservation laws); 3) defining an additional set of variables and some functional operator quantities with completely controlled evolutions (for instance, as Lax type representation). 564 pp. Englisch. Codice articolo 9780792350903
Quantità: 2 disponibili
Da: moluna, Greven, Germania
Gebunden. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. In recent times it has been stated that many dynamical systems of classical mathematical physics and mechanics are endowed with symplectic structures, given in the majority of cases by Poisson brackets. Very often such Poisson structures on corresponding ma. Codice articolo 5968479
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 564. Codice articolo 26554798
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 564 52:B&W 6.14 x 9.21in or 234 x 156mm (Royal 8vo) Case Laminate on White w/Gloss Lam. Codice articolo 8374513
Quantità: 4 disponibili
Da: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condizione: New. Provides a detailed exposition of modern Lie-algebraic theory of integrable nonlinear dynamic systems on manifolds and its applications to mathematical physics, classical mechanics and hydrodynamics. This book offers solutions to many quantization procedure problems. It is for graduate-level students, researchers and mathematical physicists. Series: Mathematics and its Applications. Num Pages: 559 pages, biography. BIC Classification: PBMP; PDE; TBJ. Category: (P) Professional & Vocational; (UP) Postgraduate, Research & Scholarly; (UU) Undergraduate. Dimension: 244 x 170 x 31. Weight in Grams: 962. . 1998. 1998th Edition. hardcover. . . . . Codice articolo V9780792350903
Quantità: 15 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND pp. 564. Codice articolo 18554788
Quantità: 4 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Buch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -In recent times it has been stated that many dynamical systems of classical mathematical physics and mechanics are endowed with symplectic structures, given in the majority of cases by Poisson brackets. Very often such Poisson structures on corresponding manifolds are canonical, which gives rise to the possibility of producing their hidden group theoretical essence for many completely integrable dynamical systems. It is a well understood fact that great part of comprehensive integrability theories of nonlinear dynamical systems on manifolds is based on Lie-algebraic ideas, by means of which, in particular, the classification of such compatibly bi Hamiltonian and isospectrally Lax type integrable systems has been carried out. Many chapters of this book are devoted to their description, but to our regret so far the work has not been completed. Hereby our main goal in each analysed case consists in separating the basic algebraic essence responsible for the complete integrability, and which is, at the same time, in some sense universal, i. e. , characteristic for all of them. Integrability analysis in the framework of a gradient-holonomic algorithm, devised in this book, is fulfilled through three stages: 1) finding a symplectic structure (Poisson bracket) transforming an original dynamical system into a Hamiltonian form; 2) finding first integrals (action variables or conservation laws); 3) defining an additional set of variables and some functional operator quantities with completely controlled evolutions (for instance, as Lax type representation).Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 564 pp. Englisch. Codice articolo 9780792350903
Quantità: 1 disponibili