During the last twenty-five years quite remarkable relations between nonas sociative algebra and differential geometry have been discovered in our work. Such exotic structures of algebra as quasigroups and loops were obtained from purely geometric structures such as affinely connected spaces. The notion ofodule was introduced as a fundamental algebraic invariant of differential geometry. For any space with an affine connection loopuscular, odular and geoodular structures (partial smooth algebras of a special kind) were introduced and studied. As it happened, the natural geoodular structure of an affinely connected space al lows us to reconstruct this space in a unique way. Moreover, any smooth ab stractly given geoodular structure generates in a unique manner an affinely con nected space with the natural geoodular structure isomorphic to the initial one. The above said means that any affinely connected (in particular, Riemannian) space can be treated as a purely algebraic structure equipped with smoothness. Numerous habitual geometric properties may be expressed in the language of geoodular structures by means of algebraic identities, etc.. Our treatment has led us to the purely algebraic concept of affinely connected (in particular, Riemannian) spaces; for example, one can consider a discrete, or, even, finite space with affine connection (in the form ofgeoodular structure) which can be used in the old problem of discrete space-time in relativity, essential for the quantum space-time theory.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Preface. Introduction. 0. Introductory Survey: Quasigroups, Loopuscular Geometry and Nonlinear Geometric Algebra. Part One: Fundamental Structures of Nonlinear Geometric Algebra. 1. Basic Algebraic Structures. 2. Semidirect Products of a Quasigroup by its Transassociants. 3. Basic Smooth Structures. Part Two: Smooth Loops and Hyperalgebras. 4. Infinitesimal Theory of Smooth Loops. 5. Smooth Bol Loops and Bol Algebras. 6. Smooth Moufang Loops and Mal'Cev Algebras. 7. Smooth Hyporeductive and Pseudoreductive Loops. Part Three: Loopuscular Geometry. 8. Affine Connections and Loopuscular Structures. 9. Reductive Geoodular Spaces. 10. Symmetric Geoodular Spaces. 11. s-Paces. 12. Geometry of Smooth Bol and Moufang Loops. Appendices. Bibliography. Index.
Book by Sabinin L
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 17,28 per la spedizione da Regno Unito a U.S.A.
Destinazione, tempi e costiEUR 6,81 per la spedizione in U.S.A.
Destinazione, tempi e costiDa: Best Price, Torrance, CA, U.S.A.
Condizione: New. SUPER FAST SHIPPING. Codice articolo 9780792359203
Quantità: 1 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 756323-n
Quantità: Più di 20 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Feb2416190183400
Quantità: Più di 20 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9780792359203
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9780792359203_new
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -During the last twenty-five years quite remarkable relations between nonas sociative algebra and differential geometry have been discovered in our work. Such exotic structures of algebra as quasigroups and loops were obtained from purely geometric structures such as affinely connected spaces. The notion ofodule was introduced as a fundamental algebraic invariant of differential geometry. For any space with an affine connection loopuscular, odular and geoodular structures (partial smooth algebras of a special kind) were introduced and studied. As it happened, the natural geoodular structure of an affinely connected space al lows us to reconstruct this space in a unique way. Moreover, any smooth ab stractly given geoodular structure generates in a unique manner an affinely con nected space with the natural geoodular structure isomorphic to the initial one. The above said means that any affinely connected (in particular, Riemannian) space can be treated as a purely algebraic structure equipped with smoothness. Numerous habitual geometric properties may be expressed in the language of geoodular structures by means of algebraic identities, etc. Our treatment has led us to the purely algebraic concept of affinely connected (in particular, Riemannian) spaces; for example, one can consider a discrete, or, even, finite space with affine connection (in the form ofgeoodular structure) which can be used in the old problem of discrete space-time in relativity, essential for the quantum space-time theory. 276 pp. Englisch. Codice articolo 9780792359203
Quantità: 2 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 756323-n
Quantità: Più di 20 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Hardback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 598. Codice articolo C9780792359203
Quantità: Più di 20 disponibili
Da: moluna, Greven, Germania
Gebunden. Condizione: New. Codice articolo 5969022
Quantità: Più di 20 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Buch. Condizione: Neu. Neuware -During the last twenty-five years quite remarkable relations between nonas sociative algebra and differential geometry have been discovered in our work. Such exotic structures of algebra as quasigroups and loops were obtained from purely geometric structures such as affinely connected spaces. The notion ofodule was introduced as a fundamental algebraic invariant of differential geometry. For any space with an affine connection loopuscular, odular and geoodular structures (partial smooth algebras of a special kind) were introduced and studied. As it happened, the natural geoodular structure of an affinely connected space al lows us to reconstruct this space in a unique way. Moreover, any smooth ab stractly given geoodular structure generates in a unique manner an affinely con nected space with the natural geoodular structure isomorphic to the initial one. The above said means that any affinely connected (in particular, Riemannian) space can be treated as a purely algebraic structure equipped with smoothness. Numerous habitual geometric properties may be expressed in the language of geoodular structures by means of algebraic identities, etc. Our treatment has led us to the purely algebraic concept of affinely connected (in particular, Riemannian) spaces; for example, one can consider a discrete, or, even, finite space with affine connection (in the form ofgeoodular structure) which can be used in the old problem of discrete space-time in relativity, essential for the quantum space-time theory.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 272 pp. Englisch. Codice articolo 9780792359203
Quantità: 2 disponibili